8 research outputs found
Thin-film carbon nitride (C2N)-based solar cell optimization considering Zn1−xMgxO as a buffer layer
Carbon nitride (C2N), a two-dimensional material, is rapidly gaining popularity in the
photovoltaic (PV) research community owing to its excellent properties, such as high thermal and
chemical stability, non-toxic composition, and low fabrication cost over other thin-film solar cells.
This study uses a detailed numerical investigation to explore the influence of C2N-based solar cells
with zinc magnesium oxide (Zn1−xMgxO) as a buffer layer. The SCAPS-1D simulator is utilized
to examine the performance of four Mg-doped buffer layers (x = 0.0625, 0.125, 0.1875, and 0.25)
coupled with the C2N-based absorber layer. The influence of the absorber and buffer layers’ band
alignment, quantum efficiency, thickness, doping density, defect density, and operating temperature
are analyzed to improve the cell performance. Based on the simulations, increasing the buffer layer
Mg concentration above x = 0.1875 reduces the device performance. Furthermore, it is found that
increasing the absorber layer thickness is desirable for good device efficiency, whereas a doping
density above 1015 cm−3
can degrade the cell performance. After optimization of the buffer layer
thickness and doping density at 40 nm and 1018 cm−3
, the cell displayed its maximum performance.
Among the four structures, C2N/Zn0.8125Mg0.1875O demonstrated the highest PCE of 19.01% with
a significant improvement in open circuit voltage (Voc), short circuit density (Jsc), and fill factor (FF).
The recorded results are in good agreement with the standard theoretical studies.Web of Science111art. no. 9
Comprehensive analysis of heterojunction compatibility of various perovskite solar cells with promising charge transport materials
Abstract The allure of perovskite solar cells (PSCs), which has captivated the interest of researchers, lies in their versatility to incorporate a wide range of materials within the cell’s structure. The compatibility of these materials plays a vital role in the performance enhancement of the PSC. In this study, multiple perovskite materials including FAPbI3, MAGeI3 and MASnI3 are numerically modelled along with the recently emerged kesterite (CBTS, CMTS, and CZTS) and zinc-based (ZnO and CdZnS) charge transport materials. To fully explore the potential of PSCs and comprehend the interplay among these materials, a total of 18 PSC structures are modeled from different material combinations. The impact of band gap, electron affinity, absorption, band alignment, band offset, electric field, recombination rate, thickness, defects, and work function were analyzed in detail through a systematic approach. The reasons for varying performance of different PSCs are also identified. Based on the simulated results, the most suitable charge transport materials are CdZnS/CMTS for FAPbI3 producing a power conversion efficiency (PCE) of 22.05%, ZnO/CZTS for MAGeI3 with PCE of 17.28% and ZnO/CBTS for MASnI3 with a PCE of 24.17%
Evaluating the influence of novel charge transport materials on the photovoltaic properties of MASnI3 solar cells through SCAPS-1D modelling
In recent decades, substantial advancements have been made in photovoltaic technologies, leading to impressive power conversion efficiencies (PCE) exceeding 25% in perovskite solar cells (PSCs). Tin-based perovskite materials, characterized by their low band gap (1.3 eV), exceptional optical absorption and high carrier mobility, have emerged as promising absorber layers in PSCs. Achieving high performance and stability in PSCs critically depends on the careful selection of suitable charge transport layers (CTLs). This research investigates the effects of five copper-based hole transport materials and two carbon-based electron transport materials in combination with methyl ammonium tin iodide (MASnI3) through numerical modelling in SCAPS-1D. The carbon-based CTLs exhibit excellent thermal conductivity and mechanical strength, while the copper-based CTLs demonstrate high electrical conductivity. The study comprehensively analyses the influence of these CTLs on PSC performance, including band alignment, quantum efficiency, thickness, doping concentration, defects and thermal stability. Furthermore, a comparative analysis is conducted on PSC structures employing both p-i-n and n-i-p configurations. The highest-performing PSCs are observed in the inverted structures of CuSCN/MASnI3/C60 and CuAlO2/MASnI3/C60, achieving PCE of 23.48% and 25.18%, respectively. Notably, the planar structures of Cu2O/MASnI3/C60 and CuSbS2/MASnI3/C60 also exhibit substantial PCE, reaching 20.67% and 20.70%, respectively
Interface engineering and defect passivation for enhanced hole extraction, ion migration, and optimal charge dynamics in both lead-based and lead-free perovskite solar cells
Abstract The study elucidates the potential benefits of incorporating a BiI3 interfacial layer into perovskite solar cells (PSCs). Using MAPbI3 and MAGeI3 as active layers, complemented by the robust TiO2 and Spiro-OMeTAD as the charge-transport-layers, we employed the SCAPS-1D simulation tool for our investigations. Remarkably, the introduction of the BiI3 layer at the perovskite-HTL interface significantly enhanced hole extraction and effectively passivated defects. This approach minimized charge recombination and ion migration towards opposite electrodes, thus elevating device performance relative to conventional configurations. The efficiency witnessed a rise from 19.28 to 20.30% for MAPbI3 and from 11.90 to 15.57% for MAGeI3. Additionally, MAGeI3 based PSCs saw an improved fill-factor from 50.36 to 62.85%, and a better Jsc from 13.22 to 14.2 mA/cm2, signifying reduced recombination and improved charge extraction. The FF for MAPbI3 based PSCs saw a minor decline, while the Voc slightly ascended from 1.24 to 1.25 V and Jsc from 20.01 to 21.6 mA/cm2. A thorough evaluation of layer thickness, doping, and temperature further highlighted the critical role of the BiI3 layer for both perovskite variants. Our examination of bandgap alignments in devices with the BiI3 interfacial layer also offers valuable understanding into the mechanisms fueling the observed improvements
Performance analysis and optimization of inverted inorganic CsGeI3 perovskite cells with carbon/copper charge transport materials using SCAPS-1D
Organic–inorganic perovskite solar cells (PSCs) have achieved the power conversion efficiencies (PCEs) of more than 25%. However, the organic compound in the material is causing structural degradation of the PSC owing to heat (thermal instability), humidity and moisture. This has led to the exploration of only inorganic perovskite materials. Inorganic PSCs such as caesium have seen a breakthrough by achieving highly stable PSC with PCE exceeding 15%. In this work, the inorganic non-toxic PSC of caesium germanium tri-iodide (CsGeI3) is numerically modelled in SCAPS-1D with two carbon-based electron transport layers (ETLs) and two copper-based hole transport layers (HTLs). This study introduces in-depth numerical modelling and analysis of CsGeI3 through continuity and Poisson equations. Cu HTLs are selected to increase the electric conductivity of the cell, while carbon-based ETL is used to increase the thermal conductivity of the PSC. A total of four unique PSC structures are designed and presented. A systematic approach is adopted to obtain the optimized PSC design parameters for maximum performance. From the optimized results, it is observed that the C60/CsGeI3/CuSCN structure is the highest performance PSC, with open-circuit voltage (Voc) of 1.0169 V, short-circuit current density (Jsc) of 19.653 mA cm−2, fill factor of 88.13% and the PCE of 17.61%. Moreover, the effect of quantum efficiency, electric field, interface recombination, interface defects, layer thickness, defect density, doping concentration, working temperature and reflection coating on the cell performance are studied in detail
Supplementary Data from Evaluating the influence of novel charge transport materials on the photovoltaic properties of MASnI<sub>3</sub> solar cells through SCAPS-1D modelling
Contain the design parameters of the different layers used for modelling the perovskite solar cell in SCAPS-1
Thin-Film Carbon Nitride (C<sub>2</sub>N)-Based Solar Cell Optimization Considering Zn<sub>1−x</sub>Mg<sub>x</sub>O as a Buffer Layer
Carbon nitride (C2N), a two-dimensional material, is rapidly gaining popularity in the photovoltaic (PV) research community owing to its excellent properties, such as high thermal and chemical stability, non-toxic composition, and low fabrication cost over other thin-film solar cells. This study uses a detailed numerical investigation to explore the influence of C2N-based solar cells with zinc magnesium oxide (Zn1−xMgxO) as a buffer layer. The SCAPS-1D simulator is utilized to examine the performance of four Mg-doped buffer layers (x = 0.0625, 0.125, 0.1875, and 0.25) coupled with the C2N-based absorber layer. The influence of the absorber and buffer layers’ band alignment, quantum efficiency, thickness, doping density, defect density, and operating temperature are analyzed to improve the cell performance. Based on the simulations, increasing the buffer layer Mg concentration above x = 0.1875 reduces the device performance. Furthermore, it is found that increasing the absorber layer thickness is desirable for good device efficiency, whereas a doping density above 1015 cm−3 can degrade the cell performance. After optimization of the buffer layer thickness and doping density at 40 nm and 1018 cm−3, the cell displayed its maximum performance. Among the four structures, C2N/Zn0.8125Mg0.1875O demonstrated the highest PCE of 19.01% with a significant improvement in open circuit voltage (Voc), short circuit density (Jsc), and fill factor (FF). The recorded results are in good agreement with the standard theoretical studies
SARS-CoV-2 vaccination modelling for safe surgery to save lives: data from an international prospective cohort study
Background Preoperative SARS-CoV-2 vaccination could support safer elective surgery. Vaccine numbers are limited so this study aimed to inform their prioritization by modelling. Methods The primary outcome was the number needed to vaccinate (NNV) to prevent one COVID-19-related death in 1 year. NNVs were based on postoperative SARS-CoV-2 rates and mortality in an international cohort study (surgical patients), and community SARS-CoV-2 incidence and case fatality data (general population). NNV estimates were stratified by age (18-49, 50-69, 70 or more years) and type of surgery. Best- and worst-case scenarios were used to describe uncertainty. Results NNVs were more favourable in surgical patients than the general population. The most favourable NNVs were in patients aged 70 years or more needing cancer surgery (351; best case 196, worst case 816) or non-cancer surgery (733; best case 407, worst case 1664). Both exceeded the NNV in the general population (1840; best case 1196, worst case 3066). NNVs for surgical patients remained favourable at a range of SARS-CoV-2 incidence rates in sensitivity analysis modelling. Globally, prioritizing preoperative vaccination of patients needing elective surgery ahead of the general population could prevent an additional 58 687 (best case 115 007, worst case 20 177) COVID-19-related deaths in 1 year. Conclusion As global roll out of SARS-CoV-2 vaccination proceeds, patients needing elective surgery should be prioritized ahead of the general population.The aim of this study was to inform vaccination prioritization by modelling the impact of vaccination on elective inpatient surgery. The study found that patients aged at least 70 years needing elective surgery should be prioritized alongside other high-risk groups during early vaccination programmes. Once vaccines are rolled out to younger populations, prioritizing surgical patients is advantageous