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Abstract: Carbon nitride (C2N), a two-dimensional material, is rapidly gaining popularity in the
photovoltaic (PV) research community owing to its excellent properties, such as high thermal and
chemical stability, non-toxic composition, and low fabrication cost over other thin-film solar cells.
This study uses a detailed numerical investigation to explore the influence of C2N-based solar cells
with zinc magnesium oxide (Zn1−xMgxO) as a buffer layer. The SCAPS-1D simulator is utilized
to examine the performance of four Mg-doped buffer layers (x = 0.0625, 0.125, 0.1875, and 0.25)
coupled with the C2N-based absorber layer. The influence of the absorber and buffer layers’ band
alignment, quantum efficiency, thickness, doping density, defect density, and operating temperature
are analyzed to improve the cell performance. Based on the simulations, increasing the buffer layer
Mg concentration above x = 0.1875 reduces the device performance. Furthermore, it is found that
increasing the absorber layer thickness is desirable for good device efficiency, whereas a doping
density above 1015 cm−3 can degrade the cell performance. After optimization of the buffer layer
thickness and doping density at 40 nm and 1018 cm−3, the cell displayed its maximum performance.
Among the four structures, C2N/Zn0.8125Mg0.1875O demonstrated the highest PCE of 19.01% with
a significant improvement in open circuit voltage (Voc), short circuit density (Jsc), and fill factor (FF).
The recorded results are in good agreement with the standard theoretical studies.

Keywords: Zn1−xMgxO; thin-film solar cells; SCAPS-1D

1. Introduction

The excessive use of fossil fuels is a major contributor to the global warming phenomenon,
making renewable energy a better alternative to meet our energy needs. Solar energy is one of
the most abundant, environmentally friendly and sustainable non-conventional sources [1].
The incident sunlight can be converted directly into useful electrical energy using photovoltaic
(PV) technology. The price of PV modules have declined by 80%, and their installation capacity
has increased rapidly over the past decade, from 40 GW to over 600 GW [2]. This breakthrough
in the PV industry has occurred due to the advancement in fabrication processes and materials
to be implemented in solar cell structures. Currently, silicon is the most common material used
in the fabrication of PV modules. Although silicon is a widely available element in nature in
the form of silicon dioxide (SiO2), processing it requires intensive energy [3]. Alternative solar
cell materials, such as CdTe [4], GaAs [5], CIGS [6], perovskite, and organic materials [7] have
also demonstrated high efficiencies, but they still have some disadvantages, including a high
manufacturing cost, toxic nature, low thermal and chemical stability, and a shorter outdoor
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life [8,9]. Developing novel materials has always been a driving factor for economic, social,
and cultural progress. The current focus in the research on sustainable energy is on preparing
materials that are cyclic and omnipresent.

In recent years, the use of two-dimensional (2D) materials in electronics, optoelectronics,
batteries [10–12], and photovoltaic cells [13,14] has become increasingly popular. Among 2D
materials, graphene has grabbed the attention of the worldwide research community due to
its promising properties [15]. In the modern age of nanotechnology, the vast potential of
graphene has opened new ways to develop other 2D materials for future technologies. For
the first time in 2015, an academic research team in South Korea synthesized nitrogenated
holey-two graphene (C2N-h2D) by using a simple wet-chemical reaction [16]. The C2N-h2D
crystal was prepared by introducing nitrogen (N) atoms into a dense network of covalently
bonded carbon atoms. The crystal network of carbon atoms can easily accommodate N-
atoms due to their atomic size and five-electron valence structure (sp2 hybridization), as
shown in Figure 1a,b. The addition of nitrogen to the carbon lattice results in a significant
improvement in the properties of carbon materials, such as thermal conductivity, band gap,
and chemical conductivity. Additionally, the phonon modes of C2N indicate high structural
stability, which can be useful for generating high energy for photovoltaic cells [17]. To the
best of our knowledge, C2N as a layer has not yet featured in the fabrication of standard PV
technologies; however, theoretical studies are limited to highlighting their basic physical
properties. Therefore, it is necessary to simulate solar cells before fabricating them in the
laboratory. Zhou et al. have performed a numerical study using five window layer materials
coupled with the C2N absorber layer, among which the CdS/C2N heterojunction structure
displayed the best efficiency of above 17% [18]. Tsoeu et al. found a 2D-based GaS/C2N
heterostructure to be a suitable alternative to lead-containing materials and reported their
proposed device efficiency as 17.8% [12]. Yasin et al. performed a numerical study on
C2N-based solar cells using four different buffer layers and attained a best efficiency of
18.57% for an IGZO-based device [19].
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from [16].

In thin-film solar cells (TFSCs), the buffer layer contributes to form a p-n junction with
the absorber layer while allowing maximum light penetration into the junction and the
absorber layer. It improves the band alignment and assists in the flow of photogenerated
charge carriers from the absorber layer to the back electrode [20]. Moreover, it plays an
essential role in minimizing the absorption of short wavelengths and the recombination at
the interface between the buffer and the absorber layers [21]. In recent studies on C2N-based
solar cells, CdS and IGZO have been utilized as electron transport layers (ETLs) [18,19].
The presence of cadmium in CdS makes it undesirable to be used in solar cells, while IGZO
leads to higher manufacturing costs because it contains rare earth metals such as indium
and gallium. Therefore, selecting an appropriate buffer layer is essential for efficient and
cost-effective C2N-based solar cells. In terms of cost and efficiency, Zn-based compounds
are considered the most promising alternatives. According to a research group based at
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Colorado State University, losses due to short wavelengths can be largely eliminated via
the ZMO window layer [22]. Ke et al. have reported that the concentration of Mg in
Zn1−xMgxO directly affects the bandgap, conduction band alignment, and Fermi-level
position of the alloy’s structure [23]. Bahfir et al. developed a CZTS-based solar cell
by replacing the CdS and ZnO ETLs with ZnMgO as a single-layer buffer material and
achieved a better PCE of 11.50% [24]. Ren et al. constructed a CdTe-based thin solar cell by
depositing a bilayer of zinc magnesium oxide (ZnMgO) on tin oxide (SiO2) and reported
an improved device efficiency of 16.76% [25]. Ren et al., in their separate study, used
RTA-treated ZnMgO for CdTe solar cells and obtained a PCE of 15.7% [26]. Shahram et al.
proposed a kesterite solar cell structure with a 50 nm-thick layer of Zn0.81Mg0.19O with an
achieved efficiency of 17.05% [27].

In this work, we aimed to investigate C2N-based solar cells structured with four
Mg-doped zinc magnesium oxide (Zn1−xMgxO) buffer layers in the SCAPS-1D simulation
software. The doping concentration of Mg varied from x = 0.0625 to x = 0.25 to achieve the
best band alignment. The absorber and buffer layers’ thickness, doping concentration, and
defect concentration are investigated with a deep understanding of the device’s internal
architecture. This study also focuses on the impact of interface defects and temperature on
solar cell performance.

2. Numerical Modeling and Simulation Parameters

The basic architecture of the proposed C2N-based solar cell structure (Al/TCO/Zn1-x
MgxO/C2N)/Ni) is shown in Figure 2. Simulations were conducted via the one-dimensional
solar cell capacitance simulator SCAPS-1D (version 3.3.10). The SCAPS-1D was developed
by Marc Burgelman and his colleague at the University of Gent, Belgium [28]. This software
solves three basic equations for semiconductor devices, namely the Poisson equation and
continuity equations for electrons and holes, as shown in Equations (1)–(3) [29,30], respectively.

Poisson equation :
∂

∂x

(
εoεr

∂Ψ
∂x

)
= −q

(
p− n + N+

D + N−A +
ρ

q

)
(1)

Continuity equation for electrons : −
(

1
q

)
∂Jn

∂x
− un + G =

∂n

∂t
(2)

Continuity equation for holes : −
(

1
q

)
∂Jp

∂x
− up + G =

∂p

∂t
(3)

where Ψ is the wave function for electrostatic potential, and εo and εr are the permittivity
of free space and the relative permittivity, respectively. The density of the defect charge is
denoted by ρ, symbols n and p represent the free carrier concentrations for electrons and
holes, the generation rate is denoted by G, and the ionized donor and acceptor densities are
labelled as N+

D and N−A , respectively. In addition, Jn and Jp represent the current densities
of the electron and hole, respectively. The SCAPS-1D is capable of performing in a variety
of conditions, such as light and dark, different device operating temperatures and rear-
contact voltages, and integrating various interfaces states. The program solves the above
semiconductor equations by using input parameters that are appropriate for the working
conditions and generating output parameters that represent the solar cell performance.
This research focus on the investigation of key performance parameters represented by
open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF), and power
conversion efficiency (PCE) to evaluate the performance of the solar cell.
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The solar cell input parameters depend on the accuracy of the results generated by
the simulator. Therefore, the material parameters for each layer are selected carefully from
authentic literature, as summarized in Table 1 [18,19,31–33]. The simulation parameters
for interfacial defects are presented in Table 2, while the metal contact electrodes and
operating temperatures are listed in Table 3. In the first stage of optimization, at a defect
density of 1014 cm−3, the C2N layer thickness was changed from 50 nm to 1000 nm while
keeping the acceptor density, thickness, and donor density of C2N and ZMO constant
at 1015 cm−3, 30 nm, and 1015 cm−3, respectively. At the optimum thickness of C2N, the
acceptor concentration was changed from 1013 cm−3 to 1018 cm−3. In the second stage, the
buffer layers were optimized following the same procedure. Finally, the optimized cells are
examined at different levels of bulk and interface defects, and their stability is studied by
changing the operating temperature.

Table 1. Initial key input parameters for the SCAPS-1D simulation.

Parameters TCO
[19,32]

Zn1−xMgxO
[31–33]

C2N
[18,19]

x = 0.0625 x = 0.125 x = 0.1875 x = 0.25

Thickness (nm) 30 30 30 30 30 300
Band gap (eV) 3.5 3.41 3.48 3.65 3.82 1.8

Electron affinity (eV) 4 4.44 4.37 4.21 4.03 4.42
Dielectric Permittivity 9 9 9 9 9 4.5

CB-effective density of states (cm−3) 2.2 × 1018 1 × 1017 9 × 1016 1 × 1016 1 × 1015 1 × 1019

VB-effective density of states (cm−3) 1.8 × 1019 1 × 1018 9 × 1017 1 × 1017 1 × 1016 1 × 1015

Electron thermal velocity (cm/s) 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107

Hole thermal velocity (cm/s) 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107

Electron mobility (cm2/(V·s)) 20 50 50 50 50 13
Hole mobility (cm2/(V·s)) 10 20 20 20 20 20.6

Donor doping concentration (cm−3) 1 × 1014 1 × 1014 1 × 1014 1 × 1014 1 × 1014 0
Acceptor doping concentration (cm−3) 0 0 0 0 0 1 × 1014

Defect density Nt (cm−3) 1 × 1014 1 × 1014 1 × 1014 1 × 1014 1 × 1014 1 × 1014

Defect type Neutral Neutral Neutral Neutral Neutral Neutral
Defect distribution Single Single Single Single Single Gaussian
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Table 2. Interface layer settings for the SCAPS simulation.

Parameters TCO/ZMO ZMO/C2N

Defect type Neutral Neutral
Capture cross section of electrons (cm2) 1 × 10−19 1 × 10−19

Capture cross section of holes (cm2) 1 × 10−19 1 × 10−19

Energetic distribution Single Single
Energy level with respect to Ev (eV) 0.6 0.6

Major carrier barrier height relative to Ef (eV) SCAPS SCAPS
Major carrier barrier height relative to Ev (eV) SCAPS SCAPS

Table 3. Input parameters used for front and back contacts in the simulation.

Parameters Back-Contact Metal Electrode Front-Contact Metal Electrode

Surface recombination velocity of electrons (cms−1) 105 107

Surface recombination velocity of holes (cms−1) 107 105

Work function (eV) 5.35 Ni (111) [34] 4.06 (AI) [34]
Working temperature (K) 300

3. Results and Discussion
3.1. Energy Band Alignment

The band alignment of semiconductor materials is crucial in determining solar cells’
performance. When two dissimilar semiconductor materials combine in a heterojunction
structure, a discontinuity in the conduction band (CB) forms. These misalignments are
represented as the conduction band offset (CBO). The values of the CBO at the interface of
the absorber layer and the buffer layer are listed in Table 4, and are calculated using the
following equation:

CBO =
(
χC2N − χZMO

)
(4)

Table 4. CBO of C2N/ZMO heterostructures.

Buffer Layer CBO (eV)

C2N/Zn1−xMgxO (x = 0.0625) −0.02
C2N/Zn1−xMgxO (x = 0.125) 0.05
C2N/Zn1−xMgxO (x = 0.1875) 0.21
C2N/Zn1−xMgxO (x = 0.25) 0.39

Generally, the band offset is of two types: (i) cliff and (ii) spike. Cliff (negative
CBO) will be generated if the CB level of the C2N layer is above the CB of the ZMO;
otherwise, spike (positive CBO) will be formed, as illustrated in Figure 3a–d. The cliff offset
reduces the built-in potential of the cell, while the spike offset increases it. In a C2N/ZMO
heterostructure, as the Mg concentration increases from x = 0.0625 to x = 0.1875, the band
gap of Zn1−xMgxO increases, which improves the energy band alignment and enhances
the solar cell performance. Whereas at x = 0.25, the increase in band gap causes a large
CBO, which reduces the efficiency. The interface between the C2N and ZMO (0.0625)
forms a small cliff (negative CBO) of −0.02 eV. Although cliff does not hinder the flow
of charge carriers from the absorber to the buffer layer, it decreases the built-in potential,
which subsequently reduces the charge carriers’ separation at the interface. A minute spike
(CBO of 0.05 eV) at the C2N/ZMO (x = 0.125) interface causes an increase in the built-in
potential, which increases the flow of electrons and improves the cell’s performance as
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compared to the first structure. A moderate spike (CBO of 0.21 eV) at the C2N/ZMO
(x = 0.1875) further enhances the built-in potential at the heterojunction, which hinders the
photogenerated charge carriers from going back to the junction interface and suppresses
charge recombination, hence improving the device performance. Moreover, a large spike
at the interface between C2N and ZMO (x = 0.25) creates a large built-in potential; it also
significantly hinders the electrons from flowing through the junction. Thus additional
drift fields are needed to ensure the flow of electrons through the junction, consequently
degrading the solar cell performance.
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Furthermore, the absorption behavior of the investigated buffer layers indicates that
the QE improves as the Mg doping of the ZMO layer increases from x = 0.0625 to x = 0.1875,
as shown in Figure 4. Below 700 nm, the QE response to the incident light spectrum
displays a noticeable variation for various buffer layers. On the other hand, when the Mg
concentration increases to x = 0.25 a CBO of 0.39 eV is formed which produces a large
spike at the heterojunction of the two layers. This large spike causes huge hurdles in the
movement of electrons from the absorber to the buffer layer, which in turn increases recom-
bination. The increase in the recombination rate reduces the amount of photogenerated
charge carriers collected at the back electrode of the solar cell, which drastically affects the
QE and reduces it.

Therefore, the energy band alignment of C2N/ZMO structures demonstrates that
a spike (positive CBO) interface helps in improving cell performance. However, a large
spike (overly positive CBO) creates a barrier for the photogenerated charge carriers, lower-
ing the short circuit current (Jsc) Figure 5 and efficiency.
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3.2. Thickness Optimization of the C2N Layer

The absorber layer thickness significantly influences the overall device efficiency [9,18,35].
In solar cells, an absorber layer with a thickness of a few hundred nanometers is sufficient
for efficient photocurrent generation. We performed our simulations by varying the absorber
layer thickness from 50 nm to 1000 nm. For a C2N/ZMO (x = 0.1875) structure, the essential
PV parameters, Voc, Jsc, and PCE, improved, as shown in Figure 6a,b,d. Above a thickness of
500 nm, the photogenerated charge carriers increased; however, as we increased the thickness
to a maximum of 1000 nm, a partial recombination of the charge carriers occurred in the C2N
layer, causing saturation in the performance. On the other hand, the fill factor (FF) demonstrates
unusual variation when increasing the thickness of the C2N layer, as shown in Figure 6c. It
starts with a downtrend but gradually increases from a 700 nm thickness. Similar behavior was
observed in the previously reported literature on C2N and perovskite [9,19]. It can be ascribed
to the charge carriers’ diffusion length, which changes the series resistance and decreases the
internal power. From 50 nm to 700 nm, the absorber layer thickness is larger than the diffusion
length, hence recombination takes place, which causes the series resistance to increase and the
internal power to deplete, leading to a drop in FF. Above 700 nm, the absorption increases as
the diffusion length exceeds the absorber layer thickness, and the FF rises again.

In addition, the positive impact of the absorber layer on solar cell performance in terms
of quantum efficiency (QE) and short circuit current (Jsc) can be seen in Figure 6e,f, where
increasing C2N thickness improves the absorption process and increases electron-hole pairs
generation. Thus, the optimum device performance was obtained at a thickness of 1000 nm
with the following parameters: PCE of 18.61 %, Voc of 1.23 V, Jsc of 18.25 mA/cm2, and FF
of 83.16 %.
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3.3. Impact of C2N Defect Density

As a member of the graphene family, C2N may contain defect points, such as vacancies,
interstitial atoms, and impurities [36]. Some deep defect points in C2N could contribute
to optical absorption and reduce the band gaps, while others negatively impact the C2N
band structure [37]. The presence of deep defect points in the absorber layer may trap the
photogenerated charge carriers and block them from reaching the back contact, thereby
reducing the device’s performance. Experimental studies have found graphene-like materi-
als to have defect densities varying from 1010 cm−3 to 1014 cm−3 [38,39]. Moreover, several
articles in the literature reported on the impact of defect density in SCAPS-simulation
ranges from 1013 cm−3 to 1020 cm−3 [40,41]. In this study, the C2N layer is examined at
three defect levels: low, average, and deep, from 1013 cm−3 to 1020 cm−3. According to
the simulated results, the solar cell parameters sharply decrease by increasing the defect
density above 1015 cm−3, as illustrated in Figure 7a–d. The sharp decrease in Voc and Jsc
with increasing defect density is ascribed to high series resistance and poor fill factor [18].

Furthermore, the bandgap tuning is caused by the increase in defect density which
deteriorates the light absorption process [19], thereby adversely impacting the quantum
efficiency (QE) and the current-voltage curve (J-V) of the cell, as can be seen from Figure 7e,f.
Although simulating solar cell devices at an extremely low defect density exhibits high
performance, it is challenging to develop such devices experimentally [42]. Therefore, we
performed our simulations at a defect density of 1014 cm−3 with a recorded PCE of 18.61%.
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3.4. Influence of C2N-Doping Density

Numerous studies have indicated that doping in the absorber layer improves the
overall performance of the solar cell [18,19,43,44]. However, doping above a certain level
could enable the structure to develop a depletion region forced by an internal voltage and
deteriorate the cell’s performance [43]. Such a depletion region potentially traps free charge
carriers and changes the electronic behavior of the material, consequently degrading the
solar cell efficiency. We varied the acceptor doping level of C2N from 1 × 1013 cm−3 to
1 × 1018 cm−3. The variation in the solar cell performance parameters with an increase in
the doping level is shown in Figure 8. The Voc increases exponentially as the doping value
increases. Above 1015 cm−3, Jsc declines drastically due to the high recombination rate and
the increase in the series resistance of the cell, resulting in poor performance. According to
our simulations, the optimum acceptor density level for C2N is selected at 1015 cm−3, with
an achieved PCE of 18.61%.
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3.5. Thickness Optimization of the Buffer Layer

In a C2N/ZMO structure, incident light passes through the buffer layer into the
absorber layer. Therefore, optimizing the buffer layer thickness is an essential step for
improving the photogeneration process in the cell. In this study, the performance of C2N-
based solar cells is investigated by varying the buffer layer thickness in the range of 10 nm
to 100 nm while keeping the thickness of the absorber layer constant at 1000 nm. As shown
in Figure 9, when the thickness of the ZMO (x = 0.1875) layer increases, the Voc, Jsc, FF, and
PCE decline after reaching the maximum point. This behavior is due to the high absorption
of photons in the buffer layer region. Therefore, fewer photons reach the junction, which
limits the generation of electron-hole pairs. Generally, a very thin buffer layer allows
a high level of photon transmittance. However, two factors primarily prevent reducing
the buffer layer thickness, i.e., the Schottky barrier structure, due to which the device
performance could reverse, and the fabrication limitation [19]. Therefore, the optimum
device performance is obtained at a thickness of 40 nm with a PCE of 18.67 %.
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3.6. Optimization of the Buffer Layer Doping Density

We investigated the cell performance by varying the doping concentration of ZMO
from 1013 cm−3 to 1020 cm−3 while keeping the thickness of the absorber and the buffer
layers constant at 1000 nm and 40 nm, respectively. The variation in the device performance
parameters of the ZMO (x = 0.1875)-based structure is displayed in Figure 10, where the
Voc sharply declines after 1016 cm−3. When the doping concentration increased from
1015 cm−3 to 1018 cm−3, the Jsc, FF, and PCE improved. According to the Moss–Burstein
effect, semiconductor bandgaps can slightly increase with high doping, providing sufficient
charge carriers and increasing conductivity [44]. The optimum recorded PCE of 19.01% is
found at a donor concentration of 1018 cm−3.
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The simulation results for C2N-based solar cells revealed that the performance pa-
rameters improved with a buffer layer Mg concentration from x = 0.0625 to x = 0.1875,
as summarized in Table 5. Among the investigated structures, the C2N/ZMO (x = 0.25)
acquires the lowest PCE of 17.71%, while the C2N/ZMO (x = 0.1875) yields the highest
PCE of 19.01%. This value is higher than previously reported CdS and IGZO-containing
C2N-based solar cells [18,19].

Table 5. C2N/ZMO-based solar cell parameters after optimization.

Simulated Parameters
Zn1−xMgxO

x = 0.0652 x = 0.125 x = 0.1875 x = 0.25

Voc (V) 1.23 1.23 1.23 1.21
Jsc (mA/cm2) 18.24 18.25 18.26 18.23
FF (%) 84.89 84.94 84.96 79.25
PCE (%) 18.98 19 19.01 17.71

3.7. Effect of the Interface Defect of C2N/ZMO

In solar cells, interface defects create recombination centers and traps, which prevent
charge carriers from reaching the back contact. In this paper, the impact of interface defects
on C2N-based solar cells is examined by changing their value from 1013 cm−2 to 1020 cm−2.
As illustrated in Figure 11, the efficiency of an x = 0.1875-based structure decreased from
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19.01% to 15.84% at 1013 cm−2 to 1020 cm−2, respectively. This drop in PCE is attributed to
the Shockley—-Read–Hall (SRH) recombination process, as shown in Equation (5) [45,46].

<SRH =
ϑσnσpNT

[
np− n2

i
]

σp[p− p1] + σn[n + n1]
(5)

where ϑ indicates the thermal velocity of an electron, and σn and σp represent the electrons
and holes capture cross-sections, respectively. NT symbolizes the number of defects per unit
volume, ni is the intrinsic number density, n and p denote the concentration of electrons and
holes at equilibrium, and n1 and p1 are the concentrations of electrons and holes in the trap
defect and valence band, respectively. According to Equation (5), it appears that increasing
defects can cause trapping centers at the interface for charge carriers to recombine, resulting
in the degradation of solar cell performance.
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3.8. Impact of Temperature Variation on the Device Performance

Solar cells are temperature-sensitive devices, thereby high operating temperatures
significantly lower their overall performance [30,47–49]. In TFSc, the rise in operating
temperature leads to an increase the recombination rate, which heats up the cell and
deteriorates its overall performance [50]. We examined the stability of the C2N/ZMO
(0.1875)-based cell by implementing an operating temperature in the range of 300 k to
500 k. The PV parameters, such as Voc, Jsc, FF, and PEC sharply decreased with the rise in
temperature, as shown in Figure 12a–d. At the given temperatures, the efficiency decreased
from 19.01% to 10.17% at 300 k and 500 k, respectively. All other structures (not shown)
exhibited similar behavior. The sharp drop in performance parameters is attributed to the
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high operating temperatures, which deformed the cell’s layers, shortened the diffusion
length, and caused a weak interlayer connection. As a result, increasing the recombination
rate and series resistance hinders the flow of photogenerated charge carriers from reaching
the back contact and degrades solar cell efficiency.
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4. Conclusions

This study presents the detailed numerical simulations of C2N-based solar cells with
the (AI/TCO/Zn1−xMgxO/C2N)/Ni) device structure using the SCAPS-1D software. The
influence of four Mg content levels on the performance of the Zn1−xMgxO/C2N heterojunc-
tion has been investigated. The simulations revealed that increasing the Mg concentration
beyond x = 0.1875 can deteriorate the solar cell performance. Among the investigated buffer
layers, x = 0.1875 achieved the highest efficiency, whereas x = 0.25 performed the least
well. The thickness of C2N was found to have a significant influence on the PV parameters,
with an optimum selected thickness of 1000 nm. When the acceptor density of C2N was
increased to 1 × 1015 cm−3, a stable performance was observed in the device. The same
stability was found for the buffer layers when the thickness and doping density were set at
40 nm and 1× 1018 cm−3, respectively. Additionally, the high defect density in the absorber
layer and at the C2N/ZMO interface accelerated the recombination rate, which caused the
degradation of solar efficiency. Furthermore, the temperature analysis showed that the
solar cell is susceptible to high operating temperatures. The findings of this contribution
highlight the potential for C2N-based heterojunction solar cells as an emerging thin-film
PV technology.
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