22 research outputs found
Understanding Cue Utility in Controlled Evasive Driving Manoeuvres: Optimizing Vestibular Cues for Simulator & Human Abilities
Most daily driving tasks are of low bandwidth and therefore the relatively slow visual system receives enough cue information to perform the task in a manner that is statistically indistinguishable from reality. On the other hand, evasive maneuvers are of such a high bandwidth that waiting for the visual cues to change is too slow and skilled drivers use steering torques and vestibular motion cues to know how the car is responding in order to make rapid corrective actions. In this study we show for evasive maneuvers on snow and ice, for which we have real world data from skilled test drivers, that the choice of motion cuing algorithm (MCA) settings has a tremendous impact on the saliency of motion cues and their similarity with reality. We demonstrate this by introducing a novel optimization scheme to optimize the classic MCA in the context of an MCA-Simulator-Driver triplet of constraints. We incorporate the following four elements to tune the MCA for a particular maneuver: 1) acceleration profiles of the maneuver observed in reality, 2) vestibular motion perception model, 3) motion envelope constraints of the simulator, and 4) a set of heuristics extracted from the literature about human motion perception (i.e. coherence zones). Including these elements in the tuning process, notwithstanding the easiness of the tuning process, respects motion platform constraints and considers human perception. Moreover the inevitable phase and gain errors arising as a major consequence of MCA are always kept within the human coherence zones, and subsequently are not perceptible as false cues. It is expected that this approach to MCA tuning will increase the transfer of training from simulator to reality for evasive driving maneuvers where students need training most and are most dangerous to perform in reality
Evaluating the effects of bilingual traffic signs on driver performance and safety
Variable Message Signs (VMS) can provide immediate and relevant information to road users and bilingual VMS can provide great flexibility in countries where a significant proportion of the population speak an alternative language to the majority. The study reported here evaluates the effect of various bilingual VMS configurations on driver behaviour and safety. The aim of the study was to determine whether or not the visual distraction associated with bilingual VMS signs of different configurations (length, complexity) impacted on driving performance. A driving simulator was used to allow full control over the scenarios, road environment and sign configuration and both longitudinal and lateral driver performance was assessed. Drivers were able to read one and two-line monolingual signs and two-line bilingual signs without disruption to their driving behaviour. However, drivers significantly reduced their speed in order to read four-line monolingual and four-line bilingual signs, accompanied by an increase in headway to the vehicle in front. This implies that drivers are possibly reading the irrelevant text on the bilingual sign and various methods for reducing this effect are discussed
Role of Multi-Wall Carbon Nanotubes on the main parameters of the Electrical Discharge Machining (EDM) process
Electrical discharge machining is a very accurate non-traditional manufacturing process for creating tiny apertures, complex shapes and geometries within mechanical parts and assemblies. Its performance is evaluated in terms of surface roughness, existence of cracks, voids and recast layer on the surface of product. The high heat generated on the electrically discharged material during the EDM process unfortunately decreases the quality of product. In this paper the high strength and unique electrical and thermal properties of multi-wall carbon nanotubes are used to improve the EDM performance when machining the AISI H13 tool steel, by means of copper electrodes. Material removal rate, electrode wear rate, surface roughness and recast layer were measured in presence of carbon nanotubes in the dielectric, then compared to the outcome of traditional EDM. Experiments show that mixing multi-wall carbon nanotubes within the dielectric makes the EDM more efficient, particularly if machining parameters are set at low pulse of energ
The activation of eco-driving mental models: can text messages prime drivers to use their existing knowledge and skills?
Eco-driving campaigns have traditionally assumed that drivers lack the necessary knowledge and skills and that this is something that needs rectifying. Therefore, many support systems have been designed to closely guide drivers and fine-tune their proficiency. However, research suggests that drivers already possess a substantial amount of the necessary knowledge and skills regarding eco-driving. In previous studies, participants used these effectively when they were explicitly asked to drive fuel-efficiently. In contrast, they used their safe driving skills when they were instructed to drive as they would normally. Hence, it is assumed that many drivers choose not to engage purposefully in eco-driving in their everyday lives. The aim of the current study was to investigate the effect of simple, periodic text messages (nine messages in 2 weeks) on drivers’ eco- and safe driving performance. It was hypothesised that provision of eco-driving primes and advice would encourage the activation of their eco-driving mental models and that comparable safety primes increase driving safety. For this purpose, a driving simulator experiment was conducted. All participants performed a pre-test drive and were then randomly divided into four groups, which received different interventions. For a period of 2 weeks, one group received text messages with eco-driving primes and another group received safety primes. A third group received advice messages on how to eco-drive. The fourth group were instructed by the experimenter to drive fuel-efficiently, immediately before driving, with no text message intervention. A post-test drive measured behavioural changes in scenarios deemed relevant to eco- and safe driving. The results suggest that the eco-driving prime and advice text messages did not have the desired effect. In comparison, asking drivers to drive fuel-efficiently led to eco-driving behaviours. These outcomes demonstrate the difficulty in changing ingrained habits. Future research is needed to strengthen such messages or activate existing knowledge and skills in other ways, so driver behaviour can be changed in cost-efficient ways
From Driving Simulation to Virtual Reality
Driving simulation from the very beginning of the advent of VR technology uses the very same technology for visualization and similar technology for head movement tracking and high end 3D vision. They also share the same or similar difficulties in rendering movements of the observer in the virtual environments. The visual-vestibular conflict, due to the discrepancies perceived by the human visual and vestibular systems, induce the so-called simulation sickness, when driving or displacing using a control device (ex. Joystick). Another cause for simulation sickness is the transport delay, the delay between the action and the corresponding rendering cues. Another similarity between driving simulation and VR is need for correct scale 1:1 perception. Correct perception of speed and acceleration in driving simulation is crucial for automotive experiments for Advances Driver Aid System (ADAS) as vehicle behavior has to be simulated correctly and anywhere where the correct mental workload is an issue as real immersion and driver attention is depending on it. Correct perception of distances and object size is crucial using HMDs or CAVEs, especially as their use is frequently involving digital mockup validation for design, architecture or interior and exterior lighting. Today, the advents of high resolution 4K digital display technology allows near eye resolution stereoscopic 3D walls and integrate them in high performance CAVEs. High performance CAVEs now can be used for vehicle ergonomics, styling, interior lighting and perceived quality. The first CAVE in France, built in 2001 at Arts et Metiers ParisTech, is a 4 sided CAVE with a modifiable geometry with now traditional display technology. The latest one is Renault’s 70M 3D pixel 5 sides CAVE with 4K x 4K walls and floor and with a cluster of 20 PCs. Another equipment recently designed at Renault is the motion based CARDS driving simulator with CAVE like 4 sides display system providing full 3D immersion for the driver. The separation between driving simulation and digital mockup design review is now fading though different uses will require different simulation configurations. New application domains, such as automotive AR design, will bring combined features of VR and driving simulation technics, including CAVE like display system equipped driving simulators