138 research outputs found

    DNS of the interaction between a shock wave and a turbulent shear flow: some effects of anisotropy

    Get PDF
    Direct numerical simulation is used to study the interaction of a Mach 1.5 shock wave and various types of anisotropic turbulent flows. We compare the interaction of isotropic, axisymmetric and sheared turbulences (sometimes combined), with a specific interest for the sheared situation. The sign and magnitude of the correlation between the velocity and temperature fluctuations are found to have a crucial influence on the kinetic energy amplification across the shock. A decrease in magnitude is observed during the interaction for the velocity cross-correlation. The balance equation of this quantity is investigated and the terms responsible for this behaviour are identified. The shear stress effect upon fluctuating vorticity and the dissipation length scale is also presented. Thermodynamic fluctuations are finally analyzed, showing the departure from the isentropic state in the sheared situation compared to the isotropic one

    A study of sheared turbulence/shock interaction: velocity fluctuations and enstrophy behaviour

    Get PDF
    Direct Numerical Simulations of the idealized interaction of a normal shock wave with several turbulent shear flows are conducted. We analyse the behaviours of velocity and vorticity fluctuations and compare them to what happens in the isotropic situation. Investigation of the budgets of these quantities allows to isolate the mechanisms underlying the physics of the interaction, and reveals the importance of enthalpic production and baroclinic torque in such flows

    DNS of the interaction between a shock wave and a turbulent shear flow

    Get PDF
    Direct numerical simulation is used to study the interaction of a Mach 1.5 shock wave and various types of anisotropic turbulent flows. We compare the interaction of isotropic, axisymmetric and sheared turbulences (sometimes combined), with a specific interest for the sheared situation

    Preferred metabolic pathway of bovine muscle fibre revealed by synchrotron–deep ultraviolet fluorescence imaging

    Get PDF
    International audienceThe different bovine muscle fibre types I, IIA and IIX are characterised by their preferred metabolic pathway, either oxidative (I, IIA) or glycolytic (IIX), and their contraction speed, either slow-twitch (I) or fast-twitch (IIA, IIX). These physiological specificities are associated with variations in intracellular composition and their fluorescence spectra signatures. We hypothesised that these slight differences in autofluorescence responses could be used to discriminate the muscle fibre types by fluorescence imaging. Serial histological cross-sections of beef longissimus dorsi were performed: the start set was used to identify the metabolic and contractile type of muscle fibres by both immunohistoenzymology and immunohistofluorescence, and the following set was used to acquire synchrotron–deep ultraviolet (UV) autofluorescence images after excitation in the UV range (275 nm and 315 nm). This strategy made it possible to explore the label-free autofluorescence of muscle cells previously subtyped by histochemistry. Glycolytic cells (IIX) showed more intense fluorescence than oxidative cells (I and IIA) with near-90 % accuracy. This discrimination is more specifically assigned to the fluorescence of nicotinamide adenine dinucleotide. UV autofluorescence was unable to discriminate contractile type

    Compressibility effects on the return to isotropy of homogeneous anisotropic turbulence

    Get PDF
    In this study, we investigate the behaviour of decaying compressible anisotropic turbulence using Direct Numerical Simulations (DNS). High-order schemes are employed to accurately solve the full three-dimensional Navier-Stokes equations. The study of compressibility effects is based on decay simulations of anisotropic turbulence with two parametric studies, one concerning the ratio between the compressible part and the total kinetic energy, and the other one concerning the turbulent Mach number. We focuse our attention on the return to isotropy phenomenon. We analyse our results in respect with previous studies

    Antibiotic Transport in Resistant Bacteria: Synchrotron UV Fluorescence Microscopy to Determine Antibiotic Accumulation with Single Cell Resolution

    Get PDF
    A molecular definition of the mechanism conferring bacterial multidrug resistance is clinically crucial and today methods for quantitative determination of the uptake of antimicrobial agents with single cell resolution are missing. Using the naturally occurring fluorescence of antibacterial agents after deep ultraviolet (DUV) excitation, we developed a method to non-invasively monitor the quinolones uptake in single bacteria. Our approach is based on a DUV fluorescence microscope coupled to a synchrotron beamline providing tuneable excitation from 200 to 600 nm. A full spectrum was acquired at each pixel of the image, to study the DUV excited fluorescence emitted from quinolones within single bacteria. Measuring spectra allowed us to separate the antibiotic fluorescence from the autofluorescence contribution. By performing spectroscopic analysis, the quantification of the antibiotic signal was possible. To our knowledge, this is the first time that the intracellular accumulation of a clinical antibitiotic could be determined and discussed in relation with the level of drug susceptibility for a multiresistant strain. This method is especially important to follow the behavior of quinolone molecules at individual cell level, to quantify the intracellular concentration of the antibiotic and develop new strategies to combat the dissemination of MDR-bacteria. In addition, this original approach also indicates the heterogeneity of bacterial population when the same strain is under environmental stress like antibiotic attack

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≄60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)
    • 

    corecore