15 research outputs found

    Development of a Krypton target for Cyclone-30 at KFSH&RC

    Get PDF
    Introduction Krypton-81m is a radioactive gas with a half-life of 13 s, and found to be useful in many applications in nuclear medicine, particularly for lung perfusion studies and ventilations. Due to high demands for 81mKr, we have developed an automated Krypton system to be installed in one of the Cyclotron’s beamlines at King Faisal Specialist Hospital and Research Centre (KFSH&RC) and to deliver large activity of the radioactive gas. Material and Methods The effective cross section of producing 81Rb is between 15 and 30 MeV [1]. Therefore, range and stopping power of the effective cross section were calculated with respect to gas density of 0.0185 g/cm3. This value is equivalent to gas density at 5.0 bars at room temperature. SRIM calculations resulted in a range of 589 mm. However, due to limitation in fabricating such long target chamber, the target length is chosen to be 250 mm. Attached to the end of target body is a special water circulating flange ‘back-pool’, its purpose is to absorb the rest of the energy and protons Bragg peak. The target body is made of Aluminum with the inner part being electroplated with nickel. The target body is of conical shape. The target body is electrically isolated from other parts to allow accurate beam current reading. Full access to the target loading/unloading steps is made through touch screen technology (FIG. 2) for user access. Additionally, the target control system is designed to be protected through chain of interlock steps. The production cycle of 81Rb is explained as follow. Target is evacuated to approximately 10−3 mbar before being filled with natKr at pressure of 5 bars. At the end of bombardment, recovery of natKr is done via cryogenic vessel. Finally, the radioactivity is washed with KCl and pushed to Hotcells through the nitrogen gas for chemistry processing. Irradiation time was approximately 30 min. Results and Conclusion Experimental results clearly showed a fairly good activity of 81mKr as shown in TABLE 1. In all experiments, the radionuclidic purity of 81mKr was above 99.59%. 79mKr and 79Kr were also measured with a percentage of, respectively, 0.34 and 0.07 %. Special attention has to be drawn to last experiment where the yield significantly in-creased, due to the period where the KCl left inside the target (10 min) before pushing the solution to the Hotcell

    Ga-Semicarbazone Complex: Potential PET Radiopharmaceutical for Tumor Imaging

    Get PDF
    In an attempt to develop new tumor imaging radiotracers with favorable biochemical properties, we have synthesized new 68 Ga-2-acetylpyridine semicarbazone ( 68 Ga-[APSC] 2 ) as a potential positron emission tomography (PET) tumor imaging agent using a straightforward and a one-step simple reaction. Radiochemical yield and purity were quantitative without HPLC purification. Biodistribution studies in nude mice model bearing human MDA-MB-231 cell line xenografts displayed significant tumor uptake of 68 Ga-[APSC] 2 radiotracer after 2 h postinjection (p.i.). The initial results demonstrate that 68 Ga-[APSC] 2 radiotracer may be useful probe for detecting and staging of hypoxic tumor using PET imaging modality

    Synthesis and Investigation of a Radioiodinated F3 Peptide Analog as a SPECT Tumor Imaging Radioligand

    Get PDF
    A radioiodinated derivative of the tumor-homing F3 peptide, (N-(2-{3-[125I]Iodobenzoyl}aminoethyl)maleimide-F3Cys peptide, [125I]IBMF3 was developed for investigation as a SPECT tumor imaging radioligand. For this purpose, we custom synthesized a modified F3 peptide analog (F3Cys) incorporating a C-terminal cysteine residue for site-specific attachment of a radioiodinated maleimide conjugating group. Initial proof-of-concept Fluorescence studies conducted with AlexaFluor 532 C5 maleimide-labeled F3Cys showed distinct membrane and nuclear localization of F3Cys in MDA-MB-435 cells. Additionally, F3Cys conjugated with NIR fluorochrome AlexaFluor 647 C2 maleimide demonstrated high tumor specific uptake in melanoma cancer MDA-MB-435 and lung cancer A549 xenografts in nude mice whereas a similarly labeled control peptide did not show any tumor uptake. These results were also confirmed by ex vivo tissue analysis. No-carrier-added [125I]IBMF3 was synthesized by a radioiododestannylation approach in 73% overall radiochemical yield. In vitro cell uptake studies conducted with [125I]IBMF3 displayed a 5-fold increase in its cell uptake at 4 h when compared to controls. SPECT imaging studies with [125I]IBMF3 in tumor bearing nude mice showed clear visualization of MDA-MB-435 xenografts on systemic administration. These studies demonstrate a potential utility of F3 peptide-based radioligands for tumor imaging with PET or SPECT techniques

    Development of a Krypton target for Cyclone-30 at KFSH&RC

    No full text
    Introduction Krypton-81m is a radioactive gas with a half-life of 13 s, and found to be useful in many applications in nuclear medicine, particularly for lung perfusion studies and ventilations. Due to high demands for 81mKr, we have developed an automated Krypton system to be installed in one of the Cyclotron’s beamlines at King Faisal Specialist Hospital and Research Centre (KFSH&RC) and to deliver large activity of the radioactive gas. Material and Methods The effective cross section of producing 81Rb is between 15 and 30 MeV [1]. Therefore, range and stopping power of the effective cross section were calculated with respect to gas density of 0.0185 g/cm3. This value is equivalent to gas density at 5.0 bars at room temperature. SRIM calculations resulted in a range of 589 mm. However, due to limitation in fabricating such long target chamber, the target length is chosen to be 250 mm. Attached to the end of target body is a special water circulating flange ‘back-pool’, its purpose is to absorb the rest of the energy and protons Bragg peak. The target body is made of Aluminum with the inner part being electroplated with nickel. The target body is of conical shape. The target body is electrically isolated from other parts to allow accurate beam current reading. Full access to the target loading/unloading steps is made through touch screen technology (FIG. 2) for user access. Additionally, the target control system is designed to be protected through chain of interlock steps. The production cycle of 81Rb is explained as follow. Target is evacuated to approximately 10−3 mbar before being filled with natKr at pressure of 5 bars. At the end of bombardment, recovery of natKr is done via cryogenic vessel. Finally, the radioactivity is washed with KCl and pushed to Hotcells through the nitrogen gas for chemistry processing. Irradiation time was approximately 30 min. Results and Conclusion Experimental results clearly showed a fairly good activity of 81mKr as shown in TABLE 1. In all experiments, the radionuclidic purity of 81mKr was above 99.59%. 79mKr and 79Kr were also measured with a percentage of, respectively, 0.34 and 0.07 %. Special attention has to be drawn to last experiment where the yield significantly in-creased, due to the period where the KCl left inside the target (10 min) before pushing the solution to the Hotcell

    Synthesis and In Vitro and In Vivo Evaluation of a New 68Ga-Semicarbazone Complex: Potential PET Radiopharmaceutical for Tumor Imaging

    Get PDF
    In an attempt to develop new tumor imaging radiotracers with favorable biochemical properties, we have synthesized new 68Ga-2-acetylpyridine semicarbazone (68Ga-[APSC]2) as a potential positron emission tomography (PET) tumor imaging agent using a straightforward and a one-step simple reaction. Radiochemical yield and purity were quantitative without HPLC purification. Biodistribution studies in nude mice model bearing human MDA-MB-231 cell line xenografts displayed significant tumor uptake of 68Ga-[APSC]2 radiotracer after 2 h postinjection (p.i.). The initial results demonstrate that 68Ga-[APSC]2 radiotracer may be useful probe for detecting and staging of hypoxic tumor using PET imaging modality

    Lunar Supercomputer Complex: 21st Century DSN Evolution Prospects

    No full text
    corecore