50 research outputs found

    Retarded Postimplantation Development of X0 Mouse Embryos: Impact of the Parental Origin of the Monosomic X Chromosome

    Get PDF
    AbstractAbout 12–17% of the embryos obtained by mating mice carrying the In(X)1H orPafmutations are of the 39,X (X0) genotype. Depending on the mutant mice used for mating, the monosomic X chromosome can be inherited from the paternal (XP) or the maternal (XM) parent. The XP0 embryos display developmental retardation at gastrulation and early organogenesis. XP0 embryos also display poor development of the ectoplacental cone, which is significantly smaller in size and contains fewer trophoblasts than XX siblings. In contrast, XM0 embryos develop normally and are indistinguishable from XX littermates. In both types of X0 embryos, an X-linkedlacZtransgene is expressed in nearly all cells in both the embryonic and the extraembryonic tissues, suggesting that X inactivation does not occur when only one X is present. Of particular significance is the maintenance of an active XPchromosome in the extraembryonic tissues where normally the paternal X chromosome is preferentially inactivated in XX embryos. The differential impact of the inheritance of X chromosomes from different parents on the development of the X0 embryos raises the possibility that the XPis less capable than the XMin providing the appropriate dosage of X-linked activity that is necessary to support normal development of the embryo and the ectoplacental cone. Alternatively, the development of the XP0 embryo may be compromised by the lack of activity of one or several X-linked genes which are expressed only from the maternal X chromosome. Without the activity of these genes, embryonic development may be curtailed even though all other loci on the XPchromosome are actively transcribed

    Novel causative mutations in patients with Nance-Horan syndrome and altered localization of the mutant NHS-A protein isoform

    Get PDF
    PURPOSE: Nance-Horan syndrome is typically characterized by severe bilateral congenital cataracts and dental abnormalities. Truncating mutations in the Nance-Horan syndrome (NHS) gene cause this X-linked genetic disorder. NHS encodes two isoforms, NHS-A and NHS-1A. The ocular lens expresses NHS-A, the epithelial and neuronal cell specific isoform. The NHS-A protein localizes in the lens epithelium at the cellular periphery. The data to date suggest a role for this isoform at cell-cell junctions in epithelial cells. This study aimed to identify the causative mutations in new patients diagnosed with Nance-Horan syndrome and to investigate the effect of mutations on subcellular localization of the NHS-A protein. METHODS: All coding exons of NHS were screened for mutations by polymerase chain reaction (PCR) and sequencing. PCR-based mutagenesis was performed to introduce three independent mutations in the NHS-A cDNA. Expression and localization of the mutant proteins was determined in mammalian epithelial cells. RESULTS: Truncating mutations were found in 6 out of 10 unrelated patients from four countries. Each of four patients carried a novel mutation (R248X, P264fs, K1198fs, and I1302fs), and each of the two other patients carried two previously reported mutations (R373X and R879X). No mutation was found in the gene in four patients. Two disease-causing mutations (R134fs and R901X) and an artificial mutation (T1357fs) resulted in premature truncation of the NHS-A protein. All three mutant proteins failed to localize to the cellular periphery in epithelial cells and instead were found in the cytoplasm. CONCLUSIONS: This study brings the total number of mutations identified in NHS to 18. The mislocalization of the mutant NHS-A protein, revealed by mutation analysis, is expected to adversely affect cell-cell junctions in epithelial cells such as the lens epithelium, which may explain cataractogenesis in Nance-Horan syndrome patients. Mutation analysis also shed light on the significance of NHS-A regions for its localization and, hence, its function at epithelial cell junctions.Shiwani Sharma, Kathryn P. Burdon, Alpana Dave, Robyn V. Jamieson, Yuval Yaron, Frank Billson, Lionel Van Maldergem, Birgit Lorenz, Jozef Gécz and Jamie E. Crai

    A dominant mutation within the DNA-binding domain of the bZIP transcription factor Maf causes murine cataract and results in selective alteration in DNA binding

    Get PDF
    The murine autosomal dominant cataract mutants created in mutagenesis experiments have proven to be a powerful resource for modelling the biological processes involved in cataractogenesis. We report a mutant which in the heterozygous state exhibits mild pulverulent cataract named ‘opaque flecks in lens', symbol Ofl. By molecular mapping, followed by a candidate gene approach, the mutant was shown to be allelic with a knockout of the bZIP transcription factor, Maf. Homozygotes for Ofl and for Maf null mutations are similar but a new effect, renal tubular nephritis, was found in Ofl homozygotes surviving beyond 4 weeks, which may contribute to early lethality. Sequencing identified the mutation as a G→A change, leading to the amino-acid substitution mutation R291Q in the basic region of the DNA-binding domain. Since mice heterozygous for knockouts of Maf show no cataracts, this suggests that the Ofl R291Q mutant protein has a dominant effect. We have demonstrated that this mutation results in a selective alteration in DNA binding affinities to target oligonucleotides containing variations in the core CRE and TRE elements. This implies that arginine 291 is important for core element binding and suggests that the mutant protein may exert a differential downstream effect amongst its binding targets. The cataracts seen in Ofl heterozygotes and human MAF mutations are similar to one another, implying that Ofl may be a model of human pulverulent cortical cataract. Furthermore, when bred onto a different genetic background Ofl heterozygotes also show anterior segment abnormalities. The Ofl mutant therefore provides a valuable model system for the study of Maf, and its interacting factors, in normal and abnormal lens and anterior segment developmen

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Exome sequencing in developmental eye disease leads to identification of causal variants in GJA8, CRYGC, PAX6 and CYP1B1

    No full text
    Developmental eye diseases, including cataract/microcornea, Peters anomaly and coloboma/microphthalmia/anophthalmia, are caused by mutations encoding many different signalling and structural proteins in the developing eye. All modes of Mendelian inheritance occur and many are sporadic cases, so provision of accurate recurrence risk information for families and affected individuals is highly challenging. Extreme genetic heterogeneity renders testing for all known disease genes clinically unavailable with traditional methods. We used whole-exome sequencing in 11 unrelated developmental eye disease patients, as it provides a strategy for assessment of multiple disease genes simultaneously. We identified five causative variants in four patients in four different disease genes, GJA8, CRYGC, PAX6 and CYP1B1. This detection rate (36%) is high for a group of patients where clinical testing is frequently not undertaken due to lack of availability and cost. The results affected clinical management in all cases. These variants were detected in the cataract/microcornea and Peters anomaly patients. In two patients with coloboma/microphthalmia, variants in ABCB6 and GDF3 were identified with incomplete penetrance, highlighting the complex inheritance pattern associated with this phenotype. In the coloboma/microphthalmia patients, four other variants were identified in CYP1B1, and CYP1B1 emerged as a candidate gene to be considered as a modifier in coloboma/microphthalmia

    Electronegative electroretinogram in the modern multimodal imaging era

    No full text
    Background: The electronegative electroretinogram (ERG) reflecting inner retinal dysfunction can assist as a diagnostic tool to determine the anatomical location in eye disease. The aim of this study is to determine the frequency and aetiology of electronegative ERG in a tertiary ophthalmology centre and to develop a clinical algorithm to assist patient management. Methods: Retrospective review of ERGs performed at the Save Sight Institute from January 2011 to December 2020. ERGs were performed according to ISCEV standard. The b:a ratio was analysed in dark adapted (DA) 3.0 or 12.0 recordings. Patients with ratio of ≤1.0 were included. Results: A total of 4421 patients had ERGs performed during study period, of which 139 patients (3.1%) had electronegative ERG. The electronegative ERG patients' median age at referral time was 37 (0.7–90.6) years. The causative aetiologies were photoreceptor dystrophy (48, 34.5%), Congenital Stationary Night Blindness (CSNB) (33, 23.7%), retinal ischemia (18, 12.9%), retinoschisis (15, 10.8%), paraneoplastic autoimmune retinopathy (PAIR) and nonPAIR (14, 10.1%), batten disease (4, 2.9%), and inflammatory retinopathy (4, 2.9%). There were three patients with an unclassified diagnosis. Thirty-two patients (23%) had good vision and a normal fundus appearance. Eleven patients (7.9%) had good vision and normal results in all multimodal imaging. Conclusions: The frequency of electronegative ERG in our referral centre was 3.1% with photoreceptor dystrophy as the main aetiology. A significant number of the cases had good vision with normal fundus or normal multimodal imaging. This further highlights the value of an ERG in this modern multimodal imaging era

    Deletion at 14q22-23 indicates a contiguous gene syndrome comprising anophthalmia, pituitary hypoplasia, and ear anomalies

    No full text
    Anophthalmia and pituitary gland hypoplasia are both debilitating conditions where the underlying genetic defect is unknown in the majority of cases. We identified a patient with bilateral anophthalmia and absence of the optic nerves, chiasm and tracts, as well as pituitary gland hypoplasia and ear anomalies with a de novo apparently balanced chromosomal translocation, 46,XY,t(3;14)(q28;q23.2). Translocation breakpoint analysis using FISH and high-resolution microarray comparative genomic hybridization (CGH) has identified a 9.66 Mb deleted region on the long arm of chromosome 14 which includes the genes BMP4, OTX2, RTN1, SIX6, SIX1, and SIX4. Three other patients with interstitial deletions involving 14q22-23 have been described, all with bilateral anophthalmia, pituitary abnormalities, ear anomalies, and a facial phenotype similar to our patient. OTX2 is involved in ocular developmental defects, and the severity of the ocular phenotype in our patient and the other 14q22-23 deletion patients, suggests this genomic region harbors other gene/s involved in ocular development. BMP4 haploinsufficiency is predicted to contribute to the ocular phenotype on the basis of its expression pattern and observed murine mutant phenotypes. In addition, deletion of BMP4 and SIX6 is likely to contribute to the abnormal pituitary development, and SIX1 deletion may contribute to the ear and other craniofacial features. This indicates that contiguous gene deletion may contribute to the phenotypic features in the 14q22-23 deletion patients.8 page(s

    Domain disruption and mutation of the bZIP transcription factor, MAF,associated with cataract, ocular anterior segment dysgenesis and coloboma

    Get PDF
    Human congenital cataract and ocular anterior segment dysgenesis both demonstrate extensive genetic and phenotypic heterogeneity. We identified a family where ocular developmental abnormalities (cataract, anterior segment dysgenesis and microphthalmia) co-segregated with a translocation, t(5;16)(p15.3;q23.2), in both balanced and unbalanced forms. We hypothesized that this altered the expression of a gene of developmental significance in the human lens and ocular anterior segment. Cloning the 16q23.2 breakpoint demonstrated that it transected the genomic-control domain of MAF, a basic region leucine zipper (bZIP) transcription factor, first identified as an oncogene, which is expressed in vertebrate lens development and regulates the expression of the eye lens crystallins. The homozygous null mutant Maf mouse embryo demonstrates defective lens formation and microphthalmia. Through mutation screening of a panel of patients with hereditary congenital cataract we identified a mutation in MAF in a three-generation family with cataract, microcornea and iris coloboma. The mutation results in the substitution of an evolutionarily highly conserved arginine with a proline at residue 288 (R288P) in the basic region of the DNA-binding domain of MAF. Our findings further implicate MAF/Maf in mammalian lens development and highlight the role of the lens in anterior segment development. The 16q23.2 breakpoint transects the common fragile site, FRA16D, providing a molecular demonstration of a germline break in a common fragile sit

    Domain disruption and mutation of the bZIP transcription factor, MAF, associated with cataract, ocular anterior segment dysgenesis and coloboma

    Get PDF
    Human congenital cataract and ocular anterior segment dysgenesis both demonstrate extensive genetic and phenotypic heterogeneity. We identified a family where ocular developmental abnormalities (cataract, anterior segment dysgenesis and microphthalmia) co-segregated with a translocation, t(5;16)(p15.3;q23.2), in both balanced and unbalanced forms. We hypothesized that this altered the expression of a gene of developmental significance in the human lens and ocular anterior segment. Cloning the 16q23.2 breakpoint demonstrated that it transected the genomic-control domain of MAF, a basic region leucine zipper (bZIP) transcription factor, first identified as an oncogene, which is expressed in vertebrate lens development and regulates the expression of the eye lens crystallins. The homozygous null mutant Maf mouse embryo demonstrates defective lens formation and microphthalmia. Through mutation screening of a panel of patients with hereditary congenital cataract we identified a mutation in MAF in a three-generation family with cataract, microcornea and iris coloboma. The mutation results in the substitution of an evolutionarily highly conserved arginine with a proline at residue 288 (R288P) in the basic region of the DNA-binding domain of MAF. Our findings further implicate MAF/Maf in mammalian lens development and highlight the role of the lens in anterior segment development. The 16q23.2 breakpoint transects the common fragile site, FRA16D, providing a molecular demonstration of a germline break in a common fragile site
    corecore