5 research outputs found
Молекуларна карактеризација и филогенетски односи европских врста рода Aphidius Nees (Hymenoptera, Braconidae, Aphidiinae)
The genus Aphidius includes many species of economic importance that are used as biocontrol agents against numerous pest aphids in greenhouses and under open field conditions. However, classification within this genus is constantly revisited, in view of the fact that the biology, ecology and taxonomic status of many species are still understudied. Partial sequences of the cytochrome oxidase subunit I mitochondrial gene (mtCOI) and Elongation factor 1-α nuclear gene (EF1-α) were used to explore the taxonomic status and phylogenetic relationships of 33 European species from the genus Aphidius in different aphid /plant host associations over a wide area of distribution. Phylogenetic analyses clarified that Aphidius is in fact a paraphyletic group. Topology of the maximum likelihood tree showed separation of 22 taxa as independent species: A. erysimi, A. sonchi, A. linosiphonis, A. hieraciorum, A. arvensis, A. balcanicus, A. phalangomyzi, A. banksae, A. uzbekistanicus, A. sussi, A. silvaticus, A. avenae, A. rosae, A. ericaphidis, A. eadyi, A. viaticus, A. schimitscheki, A. ribis, A. setiger, A. asteris, A. matricariae and A. urticae. Besides “good” species, five more clades were distinguished: i) A. salicis and A. aquilus; ii) A. funebris, A. tanacetarius, A. absinthii; iii) A. ervi and A. microlophii; iv) A. chaetosiphonis and A. hortensis; v) A. rubi and A. rhopalosiphi. Taxa within five clades could not be clearly discriminated as separate species based on either mtCOI or EF1-α. Failure of the two markers to delimit these taxa could be attributed either to adaptive divergence due to host and/or habitat range expansion and speciation or to mitochondrial introgression via hybridization of sibling species. In any event, it is suggested that their taxonomic status be re-visited using an integrative approach. Molecular characterization revealed cryptic taxa associated with different hosts within the A. urticae group. Re-descriptions of A. urticae s. str., A. rubi and A. silvaticus are given. Also, mtDNA barcoding identified the presence of A. ericaphidis for the first time in EuropeУ род Aphidius класификоване су многе врсте које су економски значајне као биолошки агенти за контролу штетних врста биљних вашију у стакленицима и на отвореном пољу. Обзиром да биологија, екологија и таксономски статус многих врста нису довољно истражени, класификација врста унутар рода се континуирано ревидира. Делимичне секвенце гена митохондријске ДНК цитохром оксидазе субјединица I (mtCOI) и једарног гена за фактор елонгације 1-α a (EF1-α) су маркери коришћени у истраживању таксономског статуса и филогенетиских односа 33 врсте рода Aphidius у асоцијацији са раличитим врстама ваши и биљака домаћина сакупљених са ширег арела у Европи. Филогенетске анализе су потврдиле да је род Aphidius парафилетички. На филогенетском стаблу конструисаном maximum likelihood методом јасно је издвајање следећа 22 таксона као засебних врста: A. erysimi, A. sonchi, A. linosiphonis, A. hieraciorum, A. arvensis, A. balcanicus, A. phalangomyzi, A. banksae, A. uzbekistanicus, A. sussi, A. silvaticus, A. avenae, A. rosae, A. ericaphidis, A. eadyi, A. viaticus, A. schimitscheki, A. ribis, A. setiger, A. asteris, A. matricariae и A. urticae Поред ових „добрих“ врста, издовјило се још пет клада: i) A. salicis и A. aquilus; ii) A. funebris, A. tanacetarius, A. absinthii; iii) A. ervi и A. microlophii; iv) A. chaetosiphonis и A. hortensis; v) A. rubi и A. rhopalosiphi. Врсте у овим кладама се не могу јасно идентификовати на основу митохондријског и једарног маркера. Неуспех у идентификацији врста применом ових маркера може се приписати адаптивној дивергенцији услед ширења круга домаћина или станишта и специјацији, или митохондријалној интрогресији приликом хибридизације примерака сродних врста. За поједине врсте сугерише се ревизија таксономског статуса, примењујући савремени интегративни приступ. Молекуларна идентификација mtCOI открила је у оквиру комплекса врста A. urticae три криптичне врсте A. urticae s. str., A. rubi и A. silvaticus. Такође, ДНК баркодинг метод је потврдио први пут у Европи присуство врсте A. ericaphidis
First record of Aphidius ericaphidis (Hymenoptera, Braconidae) in Europe: North American hitchhiker or overlooked Holarctic citizen?
Aphidius ericaphidis, an aphid parasitoid originally described from North America, is recorded in Europe for the first time, based on morphological and molecular analyses. The species is recorded in Serbia, the Netherlands, Sweden and the United Kingdom. It was formerly recorded as Aphidius sp./Ericaphis latifrons/Vaccinium uliginosum from the Alps (France). The possible origin of A. ericaphidis, as well as its likely distribution, is discussed in relation to its host. As it is a specific parasitoid of Ericaphis aphids, especially the invasive aphid Ericaphis scammelli on blueberries, its potential as a biocontrol agent is also discussed
Suzuki-Miyaura Cross-Coupling Reaction Based on Novel Palladium(II) Diphenylphosphine Derivative Catalyst
The synthesis and characterization of palladium complexes ((CH3)3SiC6H4PPh2)2PdCl2,4a, and ((CH3)3SiC12H8PPh2)2PdCl2, 4b, containing phosphine (CH3)3SiC6H4PPh2, 3a and (CH3)3SiC12H8PPh2, 3b ligands are reported. The phosphine ligands are prepared conveniently in high yield by treatment of the corresponding 1,4-dibromoarene with one equivalent of butyl lithium, and one equivalent of ClPPh2 at -78 °C under an atmosphere of argon. The palladium complexes are synthesized by the reaction of Pd(cod)Cl2 with two equivalent of the above mentioned phosphine ligands. The new complexes were fully characterized by spectroscopic methods and elemental analysis. Furthermore, the use of the palladium (II) complexes of such system as pre-catalysts for the Suzuki-Miyaura coupling of some arylbromides and arylchloride with substituted phenyl boronic acid has been tested. Keywords:1,4-dibromoarene, Palladium complex, Suzuki coupling, catalyst
Re-visiting the Aphidius urticae s. str. group: re-description of Aphidius rubi Stary and A. silvaticus Stary (Hymenoptera: Braconidae: Aphidiinae)
Here we tested Aphidius urticae s. str. host-associated lineages from Microlophium carnosum (Buckton), Amphorophora rubi (Kaltenbach), Macrosiphum funestum (Macchiati) and Aulacorthum vaccinii Hille Ris Lambers with the barcoding region of the mitochondrial cytochrome oxidase subunit I gene used to analyse population differences and elucidate phylogenetic relationships between the separated taxa. This molecular marker has been shown to be the most informative molecular marker in resolving species complexes in aphidiine parasitoids. Analyses of the mitochondrial sequences revealed the existence of three clearly separated mitochondrial lineages of A. urticae s. str. group associated with: i) Macrosiphum funestum and Aulacorthum vaccinii aphid hosts, ii) Microlophium carnosum and iii) Amphorophora rubi. This corresponds to the initial descriptions of A. rubi, A. silvaticus and A. urticae and their aphid host associations prior to synonymization of A. rubi and A. silvaticus with A. urticae. On the other hand, significant evolutionary distances ranging from 2.3 to 9.2% between the three mitochondrial lineages were not accompanied by clear morphological differences. Therefore, re-descriptions of A. rubi and A. silvaticus are presented, together with their morphological differentiation in a key, as well as their phylogenetic relationships and genetical differentiation
Molecular and morphological variation among the European species of the genus Aphidius Nees (Hymenoptera: Braconidae: Aphidiinae)
The main objective of the present paper was to analyse and compare the patterns of molecular and morphological divergence of European parasitoid wasps belonging to the diverse genus Aphidius Nees, 1818. The maximum likelihood and maximum parsimony trees constructed by including 64 different haplotypes of the barcoding region of mitochondrial cytochrome oxidase subunit I (mtCOI) identified for 33 Aphidius species showed identical topology. A high level (99%) of bootstrap support was found for the phylogenetic line consisting of A. ribis Haliday, 1834, A. chaetosiphonis Tomanović & Petrović, 2011 and A. hortensis Marshall, 1896, and for the group consisting of A. colemani Vierck, 1912, A. transcaspicus Telenga, 1958, A. asteris Haliday, 1834 and A. platensis Brethes, 1913. The remaining lineages on the trees were not significantly supported. We applied the approach of geometric morphometrics to explore morphological divergences in forewing size. A significant difference of mean wing shape was found between Aphidius species. The observed low resolution of the mtCOI gene of morphologically and ecologically well-defined Aphidius species is probably due to species hybridisation followed by introgression of mtDNA. Despite low resolution of the phylogenetic tree, the permutation test for a phylogenetic signal in wing shape was statistically significant, indicating that phylogenetically more closely related species are more similar than unrelated ones. A clear agreement between molecular and morphological variation was determined only for the two phylogenetically well-resolved groups