687 research outputs found
Spin dynamics of a Mn atom in a semiconductor quantum dot under resonant optical excitation
We analyze the spin dynamics of an individual magnetic atom (Mn) inserted in
a II-VI semiconductor quantum dot under resonant optical excitation. In
addition to standard optical pumping expected for a resonant excitation, we
show that for particular conditions of laser detuning and excitation intensity,
the spin population can be trapped in the state which is resonantly excited.
This effect is modeled considering the coherent spin dynamics of the coupled
electronic and nuclear spin of the Mn atom optically dressed by a resonant
laser field. This spin population trapping mechanism is controlled by the
combined effect of the coupling with the laser field and the coherent
interaction between the different Mn spin states induced by an anisotropy of
the strain in the plane of the quantum dot
Optical control of the spin state of two Mn atoms in a quantum dot
We report on the optical spectroscopy of the spin of two magnetic atoms (Mn)
embedded in an individual quantum dot interacting with either a single
electron, a single exciton and single trion. As a result of their interaction
to a common entity, the Mn spins become correlated. The dynamics of this
process is probed by time resolved spectroscopy, that permits to determine the
optical orientation time in the range of a few tens of . In addition, we
show that the energy of the collective spin states of the two Mn atoms can be
tuned through the optical Stark effect induced by a resonant laser field
Magnetic domain structure and dynamics in interacting ferromagnetic stacks with perpendicular anisotropy
The time and field dependence of the magnetic domain structure at
magnetization reversal were investigated by Kerr microscopy in interacting
ferromagnetic Co/Pt multilayers with perpendicular anisotropy. Large local
inhomogeneous magnetostatic fields favor mirroring domain structures and domain
decoration by rings of opposite magnetization. The long range nature of these
magnetostatic interactions gives rise to ultra-slow dynamics even in zero
applied field, i.e. it affects the long time domain stability. Due to this
additionnal interaction field, the magnetization reversal under short magnetic
field pulses differs markedly from the well-known slow dynamic behavior.
Namely, in high field, the magnetization of the coupled harder layer has been
observed to reverse more rapidly by domain wall motion than the softer layer
alone.Comment: 42 pages including 17 figures. submitted to JA
Ferromagnetic resonance in systems with competing uniaxial and cubic anisotropies
We develop a model for ferromagnetic resonance in systems with competing
uniaxial and cubic anisotropies. This model applies to (i) magnetic materials
with both uniaxial and cubic anisotropies, and (ii) magnetic nanoparticles with
effective core and surface anisotropies; We numerically compute the resonance
frequency as a function of the field and the resonance field as a function of
the direction of the applied field for an arbitrary ratio of cubic-to-uniaxial
anisotropy. We also provide some approximate analytical expressions in the case
of weak cubic anisotropy. We propose a method that uses these expressions for
estimating the uniaxial and cubic anisotropy constants, and for determining the
relative orientation of the cubic anisotropy axes with respect to the crystal
principle axes. This method is applicable to the analysis of experimental data
of resonance type measurements for which we give a worked example of an iron
thin film with mixed anisotropy.Comment: 7 pages, 3 figure
Structure and magnetism of self-organized Ge(1-x)Mn(x) nano-columns
We report on the structural and magnetic properties of thin Ge(1-x)Mn(x)films
grown by molecular beam epitaxy (MBE) on Ge(001) substrates at temperatures
(Tg) ranging from 80deg C to 200deg C, with average Mn contents between 1 % and
11 %. Their crystalline structure, morphology and composition have been
investigated by transmission electron microscopy (TEM), electron energy loss
spectroscopy and x-ray diffraction. In the whole range of growth temperatures
and Mn concentrations, we observed the formation of manganese rich
nanostructures embedded in a nearly pure germanium matrix. Growth temperature
mostly determines the structural properties of Mn-rich nanostructures. For low
growth temperatures (below 120deg C), we evidenced a two-dimensional spinodal
decomposition resulting in the formation of vertical one-dimensional
nanostructures (nanocolumns). Moreover we show in this paper the influence of
growth parameters (Tg and Mn content) on this decomposition i.e. on nanocolumns
size and density. For temperatures higher than 180deg C, we observed the
formation of Ge3Mn5 clusters. For intermediate growth temperatures nanocolumns
and nanoclusters coexist. Combining high resolution TEM and superconducting
quantum interference device magnetometry, we could evidence at least four
different magnetic phases in Ge(1-x)Mn(x) films: (i) paramagnetic diluted Mn
atoms in the germanium matrix, (ii) superparamagnetic and ferromagnetic low-Tc
nanocolumns (120 K 400 K) and
(iv) Ge3Mn5 clusters.Comment: 10 pages 2 colonnes revTex formatte
Exchange bias in GeMn nanocolumns: the role of surface oxidation
We report on the exchange biasing of self-assembled ferromagnetic GeMn
nanocolumns by GeMn-oxide caps. The x-ray absorption spectroscopy analysis of
this surface oxide shows a multiplet fine structure that is typical of the Mn2+
valence state in MnO. A magnetization hysteresis shift |HE|~100 Oe and a
coercivity enhancement of about 70 Oe have been obtained upon cooling (300-5 K)
in a magnetic field as low as 0.25 T. This exchange bias is attributed to the
interface coupling between the ferromagnetic nanocolumns and the
antiferromagnetic MnO-like caps. The effect enhancement is achieved by
depositing a MnO layer on the GeMn nanocolumns.Comment: 7 pages, 5 figure
Spinodal nanodecomposition in magnetically doped semiconductors
This review presents the recent progress in computational materials design,
experimental realization, and control methods of spinodal nanodecomposition
under three- and two-dimensional crystal-growth conditions in spintronic
materials, such as magnetically doped semiconductors. The computational
description of nanodecomposition, performed by combining first-principles
calculations with kinetic Monte Carlo simulations, is discussed together with
extensive electron microscopy, synchrotron radiation, scanning probe, and ion
beam methods that have been employed to visualize binodal and spinodal
nanodecomposition (chemical phase separation) as well as nanoprecipitation
(crystallographic phase separation) in a range of semiconductor compounds with
a concentration of transition metal (TM) impurities beyond the solubility
limit. The role of growth conditions, co-doping by shallow impurities, kinetic
barriers, and surface reactions in controlling the aggregation of magnetic
cations is highlighted. According to theoretical simulations and experimental
results the TM-rich regions appear either in the form of nanodots (the {\em
dairiseki} phase) or nanocolumns (the {\em konbu} phase) buried in the host
semiconductor. Particular attention is paid to Mn-doped group III arsenides and
antimonides, TM-doped group III nitrides, Mn- and Fe-doped Ge, and Cr-doped
group II chalcogenides, in which ferromagnetic features persisting up to above
room temperature correlate with the presence of nanodecomposition and account
for the application-relevant magneto-optical and magnetotransport properties of
these compounds. Finally, it is pointed out that spinodal nanodecomposition can
be viewed as a new class of bottom-up approach to nanofabrication.Comment: 72 pages, 79 figure
Quantitative analysis of shadow X-ray Magnetic Circular Dichroism Photo-Emission Electron Microscopy
Shadow X-ray Magnetic Circular Dichroism Photo-Emission Electron Microscopy
(XMCD-PEEM) is a recent technique, in which the photon intensity in the shadow
of an object lying on a surface, may be used to gather information about the
three-dimensional magnetization texture inside the object. Our purpose here is
to lay the basis of a quantitative analysis of this technique. We first discuss
the principle and implementation of a method to simulate the contrast expected
from an arbitrary micromagnetic state. Text book examples and successful
comparison with experiments are then given. Instrumental settings are finally
discussed, having an impact on the contrast and spatial resolution : photon
energy, microscope extraction voltage and plane of focus, microscope background
level, electric-field related distortion of three-dimensional objects, Fresnel
diffraction or photon scattering
Automatic detection and plotting of the road network from aerial images
Image analysis, in the field of cartography, is not limited only to object recognition,
but also includes the precise computation of object geometric shapes . Our
approach, for automatic extraction ofroad networkfor use in cartography, involves
two distinct steps. Step one, recognition, extracts a topologically correct exhaustive
graph of the network and step two, geometric shape extraction, computes all
centerlines for the complete road network with good quality results both in
accuracy and in cartographic representation . For object recognition, we have
developed a road following algorithm based on the minimization of a cost function
which evaluates the homogeneity . For geometric shape computation, we propose
a method based on the calculation of a well balanced position of road sections
with respect to a set of constraints : internal constraints - derived from a knowledge
of road-shape characteristics - and external constraints-which force the
connection between sets of well known points.L'analyse d'image, dans le domaine cartographique, ne se réduit pas à la reconnaissance des objets mais nécessite d'extraire leur géométrie avec une grande précision. Nous nous orientons, pour l'extraction automatique du réseau routier à des fins cartographiques, vers une approche où ces deux phases ― détection et restitution ― seraient distinctes: la phase de détection ayant pour but d'extraire un graphe exhaustif du réseau avec une topologie exacte et la phase de restitution ayant en charge le calcul de la géométrie de l'axe des routes en apportant à l'ensemble du réseau détecté une précision suffisante et une bonne représentation cartographique. Pour la détection, nous avons développé un algorithme de suivi de route basé sur l'optimisation d'un critère d'homogénéité directionnelle. Pour la phase de restitution, nous préconisons une méthode basée sur la recherche de la position d'équilibre des tronçons de route soumis à des contraintes internes ― basées sur la connaissance de la forme générale des routes ― et externes ― basées sur la connaissance de la géométrie exacte de certains points de passage de la route
Strain and correlation of self-organized Ge_(1-x)Mn_x nanocolumns embedded in Ge (001)
We report on the structural properties of Ge_(1-x)Mn_x layers grown by
molecular beam epitaxy. In these layers, nanocolumns with a high Mn content are
embedded in an almost-pure Ge matrix. We have used grazing-incidence X-ray
scattering, atomic force and transmission electron microscopy to study the
structural properties of the columns. We demonstrate how the elastic
deformation of the matrix (as calculated using atomistic simulations) around
the columns, as well as the average inter-column distance can account for the
shape of the diffusion around Bragg peaks.Comment: 9 pages, 7 figure
- …