58 research outputs found

    The UCSC Genome Browser database: extensions and updates 2011

    Get PDF
    The University of California Santa Cruz Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a wide variety of organisms. The Browser is an integrated tool set for visualizing, comparing, analyzing and sharing both publicly available and user-generated genomic data sets. In the past year, the local database has been updated with four new species assemblies, and we anticipate another four will be released by the end of 2011. Further, a large number of annotation tracks have been either added, updated by contributors, or remapped to the latest human reference genome. Among these are new phenotype and disease annotations, UCSC genes, and a major dbSNP update, which required new visualization methods. Growing beyond the local database, this year we have introduced ‘track data hubs’, which allow the Genome Browser to provide access to remotely located sets of annotations. This feature is designed to significantly extend the number and variety of annotation tracks that are publicly available for visualization and analysis from within our site. We have also introduced several usability features including track search and a context-sensitive menu of options available with a right-click anywhere on the Browser's image

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    A prospective examination of sex differences in posttraumatic autonomic functioning.

    Get PDF
    Background: Cross-sectional studies have found that individuals with posttraumatic stress disorder (PTSD) exhibit deficits in autonomic functioning. While PTSD rates are twice as high in women compared to men, sex differences in autonomic functioning are relatively unknown among trauma-exposed populations. The current study used a prospective design to examine sex differences in posttraumatic autonomic functioning. Methods: 192 participants were recruited from emergency departments following trauma exposure ( Results: 2-week systolic BP was significantly higher in men, while 2-week HR was significantly higher in women, and a sex by PTSD interaction suggested that women who developed PTSD demonstrated the highest HR levels. Two-week HF-HRV was significantly lower in women, and a sex by PTSD interaction suggested that women with PTSD demonstrated the lowest HF-HRV levels. Skin conductance response in the emergency department was associated with 2-week HR and HF-HRV only among women who developed PTSD. Conclusions: Our results indicate that there are notable sex differences in autonomic functioning among trauma-exposed individuals. Differences in sympathetic biomarkers (BP and HR) may have implications for cardiovascular disease risk given that sympathetic arousal is a mechanism implicated in this risk among PTSD populations. Future research examining differential pathways between PTSD and cardiovascular risk among men versus women is warranted

    Erratum: Corrigendum: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution

    Get PDF
    International Chicken Genome Sequencing Consortium. The Original Article was published on 09 December 2004. Nature432, 695–716 (2004). In Table 5 of this Article, the last four values listed in the ‘Copy number’ column were incorrect. These should be: LTR elements, 30,000; DNA transposons, 20,000; simple repeats, 140,000; and satellites, 4,000. These errors do not affect any of the conclusions in our paper. Additional information. The online version of the original article can be found at 10.1038/nature0315

    Verbal predictions of unexpected stimuli and choice reaction time

    No full text
    corecore