164 research outputs found

    A Practical Theory of Language-integrated Query

    Get PDF
    Language-integrated query is receiving renewed attention, in part because of its support through Microsoft’s LINQ framework. We present a practical theory of language-integrated query based on quotation and normalisation of quoted terms. Our technique supports join queries, abstraction over values and predicates, composition of queries, dynamic generation of queries, and queries with nested intermediate data. Higher-order features prove useful even for constructing first-order queries. We prove a theorem characterising when a host query is guaranteed to generate a single SQL query. We present experimental results confirming our technique works, even in situations where Microsoft’s LINQ framework either fails to produce an SQL query or, in one case, produces an avalanche of SQL queries

    Climate vulnerability assessment for Pacific salmon and steelhead in the California Current Large Marine Ecosystem.

    Get PDF
    Major ecological realignments are already occurring in response to climate change. To be successful, conservation strategies now need to account for geographical patterns in traits sensitive to climate change, as well as climate threats to species-level diversity. As part of an effort to provide such information, we conducted a climate vulnerability assessment that included all anadromous Pacific salmon and steelhead (Oncorhynchus spp.) population units listed under the U.S. Endangered Species Act. Using an expert-based scoring system, we ranked 20 attributes for the 28 listed units and 5 additional units. Attributes captured biological sensitivity, or the strength of linkages between each listing unit and the present climate; climate exposure, or the magnitude of projected change in local environmental conditions; and adaptive capacity, or the ability to modify phenotypes to cope with new climatic conditions. Each listing unit was then assigned one of four vulnerability categories. Units ranked most vulnerable overall were Chinook (O. tshawytscha) in the California Central Valley, coho (O. kisutch) in California and southern Oregon, sockeye (O. nerka) in the Snake River Basin, and spring-run Chinook in the interior Columbia and Willamette River Basins. We identified units with similar vulnerability profiles using a hierarchical cluster analysis. Life history characteristics, especially freshwater and estuary residence times, interplayed with gradations in exposure from south to north and from coastal to interior regions to generate landscape-level patterns within each species. Nearly all listing units faced high exposures to projected increases in stream temperature, sea surface temperature, and ocean acidification, but other aspects of exposure peaked in particular regions. Anthropogenic factors, especially migration barriers, habitat degradation, and hatchery influence, have reduced the adaptive capacity of most steelhead and salmon populations. Enhancing adaptive capacity is essential to mitigate for the increasing threat of climate change. Collectively, these results provide a framework to support recovery planning that considers climate impacts on the majority of West Coast anadromous salmonids

    US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report

    Get PDF
    This white paper summarizes the workshop "U.S. Cosmic Visions: New Ideas in Dark Matter" held at University of Maryland on March 23-25, 2017.Comment: 102 pages + reference

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Challenges and opportunities in the design and construction of a GIS-based emission inventory infrastructure for the Niger Delta region of Nigeria

    Get PDF
    © 2017, Springer-Verlag Berlin Heidelberg. Environmental monitoring in middle- and low-income countries is hampered by many factors which include enactment and enforcement of legislations; deficiencies in environmental data reporting and documentation; inconsistent, incomplete and unverifiable data; a lack of access to data; and technical expertise. This paper describes the processes undertaken and the major challenges encountered in the construction of the first Niger Delta Emission Inventory (NDEI) for criteria air pollutants and CO2 released from the anthropogenic activities in the region. This study focused on using publicly available government and research data. The NDEI has been designed to provide a Geographic Information System-based component of an air quality and carbon management framework. The NDEI infrastructure was designed and constructed at 1-, 10- and 20-km grid resolutions for point, line and area sources using industry standard processes and emission factors derived from activities similar to those in the Niger Delta. Due to inadequate, incomplete, potentially inaccurate and unavailable data, the infrastructure was populated with data based on a series of best possible assumptions for key emission sources. This produces outputs with variable levels of certainty, which also highlights the critical challenges in the estimation of emissions from a developing country. However, the infrastructure is functional and has the ability to produce spatially resolved emission estimates

    Fortune Favours the Bold: An Agent-Based Model Reveals Adaptive Advantages of Overconfidence in War

    Get PDF
    Overconfidence has long been considered a cause of war. Like other decision-making biases, overconfidence seems detrimental because it increases the frequency and costs of fighting. However, evolutionary biologists have proposed that overconfidence may also confer adaptive advantages: increasing ambition, resolve, persistence, bluffing opponents, and winning net payoffs from risky opportunities despite occasional failures. We report the results of an agent-based model of inter-state conflict, which allows us to evaluate the performance of different strategies in competition with each other. Counter-intuitively, we find that overconfident states predominate in the population at the expense of unbiased or underconfident states. Overconfident states win because: (1) they are more likely to accumulate resources from frequent attempts at conquest; (2) they are more likely to gang up on weak states, forcing victims to split their defences; and (3) when the decision threshold for attacking requires an overwhelming asymmetry of power, unbiased and underconfident states shirk many conflicts they are actually likely to win. These “adaptive advantages” of overconfidence may, via selection effects, learning, or evolved psychology, have spread and become entrenched among modern states, organizations and decision-makers. This would help to explain the frequent association of overconfidence and war, even if it no longer brings benefits today
    corecore