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Abstract
Language-integrated query is receiving renewed attention, in part
because of its support through Microsoft’s LINQ framework. We
present a practical theory of language-integrated query based on
quotation and normalisation of quoted terms. Our technique sup-
ports join queries, abstraction over values and predicates, compo-
sition of queries, dynamic generation of queries, and queries with
nested intermediate data. Higher-order features prove useful even
for constructing first-order queries. We prove a theorem character-
ising when a host query is guaranteed to generate a single SQL
query. We present experimental results confirming our technique
works, even in situations where Microsoft’s LINQ framework ei-
ther fails to produce an SQL query or, in one case, produces an
avalanche of SQL queries.

Categories and Subject Descriptors D.1.1 [Applicative (Func-
tional) Programming]; D.3.1 [Formal Definitions and Theory];
D.3.2 [Language Classifications]: Applicative (functional) lan-
guages; D.3.3 [Language Constructs and Features]; H.2.3 [Lan-
guages]: Query languages

Keywords lambda calculus; LINQ; F#; SQL; quotation; anti-
quotation

1. Introduction
What is the difference between theory and practice?
In theory there is no difference, but in practice there is.1

A quarter-century ago, Copeland and Maier (1984) decried the
“impedance mismatch” between database and conventional pro-
gramming models, and Atkinson and Buneman (1987) spoke of
“The need for a uniform language” (their emphasis), and observed
that “Databases and programming languages have developed al-
most independently of one another for the past twenty years.”
Smooth integration of database queries with programming lan-
guages, also known as language-integrated query, remains an open
problem. Language-integrated query is receiving renewed atten-
tion, in part because of its support through Microsoft’s LINQ
framework (Meijer et al. 2006; Syme 2006).

1 Attributed variously to Yogi Berra, William T. Harbaugh, Karl Marx,
Chuck Reid, and Jan L. A. van de Snepscheut.
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The problem is simple: two languages are more than twice as
difficult to use as one language. The host and query languages often
use different notations for the same thing, and convenient abstrac-
tions such as higher-order functions and nesting may not be avail-
able in the query language. Interfacing between the two adds to the
mental burden on the programmer and leads to complex code, bugs,
and security holes such as SQL injection attacks. Wrapper libraries,
such as JDBC, provide raw access to high-performance SQL, but
the resulting code is difficult to maintain. Object-relational map-
ping frameworks, such as Hibernate, provide an object-oriented
view of the data that makes code easier to maintain but sacrifices
performance (Goldschmidt et al. 2008); and workarounds to re-
cover performance, such as framework-specific query languages,
reintroduce the drawbacks of the two-language approach.

We present a practical theory of language-integrated query, con-
sisting of a theoretical model, T-LINQ, and a practical implemen-
tation, P-LINQ. Our approach is based on quotation and normali-
sation of quoted terms. Our approach can be used in off-the-shelf
languages, such as F#, fits with existing frameworks, such as Mi-
crosoft LINQ, and does not require specialised type systems of
the kind found in Ur (Chlipala 2010) or our own work on Links
(Cooper et al. 2007; Cooper 2009). In this paper we focus on SQL
queries, although we believe the techniques adapt to other targets,
such as XQuery, and may even be applicable to DSLs for domains
other than query.

Microsoft LINQ was released as a part of .NET Framework 3.5
in November 2007, and LINQ continues to evolve with new re-
leases. LINQ operators construct queries in a host language, and
LINQ providers translate these into a target language, such as SQL,
XQuery, or GPU code. In this paper we focus on Microsoft’s LINQ
to SQL provider, which targets Microsoft SQL Server. There are
variants of LINQ for C#, Visual Basic, and F#, among others. T-
LINQ and P-LINQ correspond to LINQ for F#. Similar techniques
may apply to C#, though it requires some tricks to support anti-
quotation (Petricek 2007b). A few details of F# 3.0 hinder smooth
integration with P-LINQ, and we are working with Microsoft to
enable its wider use.

Our formal theory T-LINQ is similar in scope, power, and trans-
lation technique to NRC (Buneman et al. 1994; Wong 1996) and to
our own previous work on Links (Cooper et al. 2007; Cooper 2009).
NRC is a special-purpose, first-order query language, and does not
address integration into a general-purpose language. Links sup-
ports higher-order queries and addresses integration, but requires
a special-purpose type-and-effect system. Our achievement here is
to transpose most of the benefits of Links for language-integrated
querying to a widely-used practical language.

We had previously argued that Links offered significant benefits
over LINQ. A precise comparison was difficult because LINQ,
like many practical systems, is large and not precisely defined. To
explore the relationship between Links and LINQ, we formulated
a core calculus capturing essential features of LINQ. In the course
of formulating T-LINQ, we realised that many of the benefits of



Links can in fact be achieved in LINQ, and we are pleased to offer
P-LINQ as a widely-available alternative.

Through a series of examples, we show how our technique sup-
ports join queries, abstraction over values and predicates, compo-
sition of queries, dynamic generation of queries, and queries con-
taining intermediate nested data. We believe our series of examples
distills an important set of features, and may be of independent in-
terest. Among other things, these examples demonstrate the value
of higher-order functions and nesting in queries, even when the tar-
get query language, in this case SQL, is first-order and does not
support nested data.

We require that each query in the host language generate ex-
actly one SQL query. Alluding to twin perils Odysseus sought to
skirt when navigating the straits of Medina, we seek to avoid Scylla
and Charybdis. Scylla stands for the case where the system fails
to generate a query, signalling an error. Charybdis stands for the
case where the system generates multiple queries, hindering effi-
ciency. The overhead of accessing a database is high, and to a first
approximation cost is proportional to the number of queries. We
particularly want to avoid a query avalanche, in the sense of Grust
et al. (2010), where a single host query generates a number of SQL
queries proportional to the size of the data.

Current LINQ implementations may founder on either of these
perils. Scylla: many of our examples fail under either F# 2.0 or
F# 3.0, and different examples fail in the two different systems.
Charybdis: one of our examples causes a query avalanche in F# 3.0.
In Grust et al. (2010) avalanches are caused by queries with nested
results; interestingly, the avalanche is caused by a query with flat
results, but with nested intermediate structure. The documentation
for F# LINQ does not explain when host queries may fail or when
multiple SQL queries may be generated; trial and error is required
to determine what does or does not work.

Our work avoids these perils. For T-LINQ, we prove the Scylla
and Charybdis theorem, characterising when a host query is guar-
anteed to generate a single SQL query. All our examples are easily
seen to satisfy the characterisation in the theorem, and indeed our
theory yields the same SQL query for each that one would write by
hand. For P-LINQ, we verify that its run time on our examples is
comparable to that of F# 2.0 and F# 3.0, in the cases where those
systems generate a query, and significantly faster in the one case
where F# 3.0 generates an avalanche—indeed, arbitrarily faster as
the size of the data grows.

Our theory models only a fraction of the features of LINQ, but
our practice applies to its entirety. T-LINQ supports queries formed
from comprehensions, union, and existence tests, but excludes sort-
ing, grouping, and aggregation; extending it to these other features
is important future work. However, P-LINQ supports all features
of LINQ, and we validate its coverage and performance, showing it
has comparable runtime to F# 3.0 for all 62 database queries listed
in the F# 3.0 documentation.

The language features we require are lambda abstraction,
records and lists, comprehension notation, and quotation and anti-
quotation. Quotation and anti-quotation first appear in Lisp, and
are also found in Scheme, Racket, Haskell (via Template Haskell),
OCaml (via Camlp4), and F#. Quotation comes in two forms,
closed and open; in the former, quoted terms must contain no free
quoted variables. All languages with quotation support closed quo-
tation, while only some support open quotation; in particular, F#
only supports closed quotation. Our approach requires only closed
quotation.

We observe that one should abstract when possible in the quoted
language rather than the host language, as this enables composition
while restricting to closed quotation. Though it seems obvious in
retrospect, that one should abstract when possible in the quoted
language came as a surprise to us; previously, we had assumed one

people
name age
“Alex” 60
“Bert” 55
“Cora” 33
“Drew” 31
“Edna” 21
“Fred” 60

couples
her him
“Alex” “Bert”
“Cora” “Drew”
“Edna” “Fred”

Figure 1. People as a Database

should abstract when possible in the host language, as is done when
using open quotation.

Many embedded domain specific languages (EDSLs) build ex-
pression trees as constructs of the host language. For instance, in
Nikola (Mainland and Morrisett 2010) or Feldspar (Axelsson et al.
2010; Axelsson and Svenningsson 2012), addition is overloaded so
that a + b denotes either an integer (of type int) or a quotation
of an expression that yields an integer (of type Expr< int >), de-
pending on whether a and b denote either the former or latter. For
technical reasons, overloading does not apply to all operations, so
users have the minor inconvenience of writing a < b as a . < . b
and if a then b else c as a ? (b, c). In our case, quotation avoids
this inconvenience, allowing terms in the embedded language to
use identical syntax to the host language. It is common for EDSLs
to reuse the type system of the host language as the type system
of the embedded language—here we have, in effect, extended the
same idea to syntax.

The contributions of this paper are:

• We introduce our technique, and through a series of exam-
ples show how it supports join queries, abstraction over val-
ues and predicates, composition of queries, dynamic generation
of queries, and nesting of intermediate data. We also present a
larger example of translation from XPath to SQL, which illus-
trates the power resulting from combining higher-order queries
with language integration. (Sections 2, 3, and 4).

• We develop our theoretical model, T-LINQ, and prove standard
results, including a theorem that normalisation always succeeds
in translating any T-LINQ query to SQL. (Section 5.)

• We observe that one should abstract when possible in the quoted
language rather than the host language, in order to support
composition in the presence of closed quotation, and we show
how closed quotation can simulate open quotation. (Section 6
and 7.)

• We describe our practical implementation, P-LINQ, and present
experimental results confirming our technique works in prac-
tice. We observe that F# 2.0 or F# 3.0 fail on key examples
where we succeed; that when F# 2.0 or F# 3.0 succeed our per-
formance is comparable; that when F# 3.0 avalanches our per-
formance is arbitrarily better as the problem size grows; and that
we handle with comparable performance all 62 database query
examples in the F# 3.0 documentation. (Sections 8 and 9.)

• We discuss related work, and summarise our results in the form
of a recipe that may apply to a wide variety of domain-specific
languages. (Sections 10 and 11.)

Our implementation, examples, and experimental data are available
online in the ACM Digital Library.

2. Fundamentals
We consider a simplified programming language, based loosely on
F# (Syme et al. 2012), featuring records and list comprehensions.



{people =
[{name = “Alex” ; age = 60};
{name = “Bert” ; age = 55};
{name = “Cora” ; age = 33};
{name = “Drew”; age = 31};
{name = “Edna”; age = 21};
{name = “Fred” ; age = 60}];

couples =
[{her = “Alex” ; him = “Bert” };
{her = “Cora” ; him = “Drew”};
{her = “Edna”; him = “Fred” }]}

Figure 2. People as Data

We review the relationship between comprehensions and database
queries and then introduce the use of quotation to construct queries.

2.1 Comprehensions and Queries
For purposes of illustration, we consider a simple database con-
taining two tables, shown in Figure 1. The first table, people, has
columns for name and age, and the second table, couples, has
columns for her and him. (Schema update will be required once
equal marriage legislation passes in Scotland.) Here is an SQL
query that finds the name of every woman that is older than her
mate, paired with the difference in ages.

select w.name as name,w.age−m.age as diff
from couples as c, people as w, people as m
where c.her = w.name and c.him = m.name and

w.age > m.age

It returns the following table:

name diff
“Alex” 5
“Cora” 2

Assuming the people table is indexed with name as a key, this
query can be answered in time O(|couples|).

The database is represented in T-LINQ as a record of tables,
where each table is represented as a list of rows, and each row is
represented as a record of scalars.

type DB = {people : {name : string; age : int} list;
couples : {her : string; him : string} list}

Following F#, we use lists to represent tables, and will not consider
the order of their elements as significant. We follow the notational
conventions of F#, writing lists in square brackets and records in
curly braces.

Our language includes a construct that takes the name of the
database and returns its content as a data structure.

let db′ : DB = database(“People”)

If “People” is the name of the database in Figure 1, then db′ is
bound to the value shown in Figure 2. We stick a prime on the name
to warn that this is too naive: typically, the database will be too large
to read into main memory. We consider a feasible alternative in the
next section.

Many programming languages provide a comprehension nota-
tion offering operations over lists analogous to those provided by
SQL over tables (Trinder and Wadler 1989; Buneman et al. 1994).
F# also supports a form of comprehension notation called compu-
tation expressions (Petricek and Syme 2012). T-LINQ follows this
approach, so the previous query can be written as follows.

let differences′ : {name : string; diff : int} list =
for c in db′.couples do
for w in db′.people do
for m in db′.people do
if c.her = w.name && c.him = m.name &&

w.age > m.age then
yield {name : w.name; diff : w.age−m.age}

Evaluating differences′ returns the value

[{name = “Alex”; diff = 5}; {name = “Cora”; diff = 2}]
which corresponds to the table returned by the previous SQL query.
Again, we stick a prime on the name to warn that this tech-
nique is too naive: typically, in-memory evaluation of a compre-
hension does not take advantage of indexing, and so requires time
O(|couples| · |people|2). We consider a feasible alternative in the
next section.

Here we use three constructs, similar to those supported in the
sequence expressions of F#. The term for x in M do N binds x
to each value in the list M and computes the list N , concatenating
the results; in mathematical notation, we write

⊎
{N | x ∈ M};

note that x is free in M but bound in N . The term if L then M
evaluates boolean L and returns list M if it is true and the empty
list otherwise. The term yieldM returns a singleton list containing
the value of M .

Many languages support similar notation, including Haskell,
Python, C#, and F#. The T-LINQ term

for x in L do for y inM do if P then yield N

is equivalent to the mathematical notation

{N | x ∈ L, y ∈M, P}
or the F# sequence expression

seq {for x in L do for y inM do if P then yield N}.
The last is identical to T-LINQ, save it is preceded by the keyword
seq and surrounded by braces.

2.2 Query via Quotation
T-LINQ allows programmers to access databases using a notation
nearly identical to the naive approach of the previous section, but
generating efficient queries in SQL. The recipe for conversion is
as follows. First, we wrap the reference to the database inside
quotation brackets, <@ · · · @>.

let db : Expr<DB > = <@ database(“People”) @>

Next, we wrap the query inside quotation brackets, <@ · · · @>, and
wrap occurrences of any externally bound variable, such as db, in
anti-quotation brackets, (% · · · ).

let differences : Expr< {name : string; diff : int} list > =
<@ for c in (%db).couples do

for w in (%db).people do
for m in (%db).people do
if c.her = w.name && c.him = m.name &&

w.age > m.age then
yield {name : w.name; diff : w.age−m.age} @>

Finally, to get the answer we evaluate the term

run(differences) (1)

Evaluating (1) takes the quoted expression, normalises it, translates
the normalised expression to SQL, evaluates the SQL query on
the database, and imports the resulting table as a data structure.
In this case, the quoted expression is already in normal form, and



it translates into the SQL in the previous section, and so returns
the table and answer seen previously. We drop the warning primes,
because the answer is computed feasibly by access to the database.

The notation <@ · · · @> indicates quotation, which views an ex-
pression of type A as a data structure of type Expr<A > that repre-
sents the expression as an abstract syntax tree. The notation (% · · · )
indicates anti-quotation, which splices a value of type Expr<A >
into a quoted expression at a point expecting a quoted term of type
A. Database access, indicated by the keyword database, denotes
the value of the database viewed as a record of tables, where each
table is a list of rows, and each row is a record of scalars. Database
access is only permitted within quotation, as its use outside quota-
tion would require reading the entire database into main memory,
which is in general infeasible. Query evaluation, indicated by the
keyword run, takes an expression of type Expr<A >, normalises
it, translates the normalised expression to SQL, evaluates the SQL
query on the database, and imports the result as a data structure of
type A.

Some restrictions are required on the abstract syntax tree in a
run expression in order to ensure that it may be successfully trans-
lated to SQL. First, all database literals within a given query must
refer to a single database on which the query is to be evaluated.
Second, the return type must be a flat relation type, that is, a list
of records with fields of scalar type. Third, the expression must not
contain operations that cannot be converted to SQL, such as recur-
sion. (Technically, SQL supports some forms of recursion, such as
transitive closure, but current LINQ systems do not.) Fourth, we re-
strict our attention to queries built from sequence comprehensions,
emptiness tests, and sequence union. In T-LINQ, these restrictions
are statically checked (in the case of the first restriction, by only
supporting one database); in P-LINQ, these restrictions are dynam-
ically checked.

T-LINQ captures the essence of query processing in Microsoft
LINQ, particularly as it is expressed in F#. However, the details
of Microsoft LINQ are more complicated, involving three types
Expression<A>, IEnumerable<A> and IQueryable<A> that play
overlapping roles, together with implicit type-based coercions in-
cluding a type-based approach to quotation in C# and Visual Ba-
sic, plus special additional query notations in C#, Visual Basic, and
F# 3.0. We relate our model to the pragmatics of LINQ in Section 8.

2.3 Abstracting over Values
Our quoted language supports abstraction. Here is a query that finds
the names of all people with ages in a given range, inclusive of the
lower bound but exclusive of the upper bound.

type Names = {name : string} list
let range : Expr< (int, int)→ Names > =
<@ fun(a, b)→ for w in (%db).people do

if a ≤ w.age && w.age < b then
yield {name : w.name} @>

We insist that the answer type always corresponds to a table, so
here we return a list of records with a name field, rather than just a
list of strings.

Here we have abstracted in the quoted language rather than the
host language. As we shall see, this is essential to being able to
reuse queries flexibly in constructing other queries. As we explain
in Section 6, we recommend abstracting in the quoted language
rather that the host language whenever possible, because it supports
composition.

Here we use the usual F# notation for function abstraction.
Function applications inside queries normalise by beta reduction:

(fun(x)→ N)(M) N [x := M ],

where N [x := M ] denotes the capture-avoiding substitution of
terms M for variables x in term N .

We form a specific query by instantiating the parameters:

run(<@ (%range)(30, 40) @>) (2)

Evaluating (2) finds everyone in their thirties:

[{name = “Cora”}; {name = “Drew”}]
In this case, the term passed to run is not quite in normal form: it
requires one step of beta-reduction, substituting the actuals 30 and
40 for the formals a and b.

More generally, we can instantiate arbitrary values by use of the
lift operator, which lifts a value of some base type O into a quoted
expression of type Expr<O >.

let a = 30
let b = 40
run(<@ (%range)(lift(a), lift(b)) @>)

This returns the same value as the previous query.

2.4 Abstracting over a Predicate
In general, we may abstract over an arbitrary predicate.

let satisfies : Expr< (int→ bool)→ Names > =
<@ fun(p)→ for w in (%db).people do

if p(w.age) then
yield {name : w.name} @>

A predicate over ages is denoted by a function from integers to
booleans. We form a specific query by instantiating the predicate:

run(<@ (%satisfies)(fun(x)→ 30 ≤ x && x < 40) @>) (3)

Evaluating (3) yields the same query as (2). In this case, the term
passed to run requires two steps of beta-reduction to normalise.
The first step replaces p by the function, and enables the second
step, which replaces x by w.age.

We can instantiate the query with any predicate, so long as it
only contains operators available in SQL:

run(<@ (%satisfies)(fun(x)→ x mod 2 = 0) @>) (4)

Evaluating (4) finds everyone whose age is even. It would not work
if, say, the predicate invoked recursion.

2.5 Composing Queries
Uniformly defining queries as quotations makes it easy to compose
queries. Say that given two names, we wish to find the names of
everyone at least as old as the first but no older than the second.
To express this concisely, we define an auxiliary query that finds a
person’s age.

let getAge : Expr< string→ int list > =
<@ fun(s)→ for u in (%db).people do

if u.name = s then yield u.age @>

If names are keys, this will return at most one age. It returns a list of
integers, not a list of records, so it is not suitable for use as a query
on its own, but may be used inside other queries. We may now form
our query by composing two uses of the auxiliary getAge with the
query range.

let compose : Expr< (string, string)→ Names > =
<@ fun(s, t)→ for a in (%getAge)(s) do

for b in (%getAge)(t) do
(%range)(a, b) @>

We form a specific query by instantiating the parameters.

run(<@ (%compose)(“Edna”, “Bert”) @>) (5)



Evaluating (5) yields the value:

[{name = “Cora”}; {name = “Drew”}; {name = “Edna”}]
Unlike the previous examples, normalisation of this query requires
rules other than beta-reduction; it is described in detail in Sec-
tion 5.4.

2.6 Dynamically Generated Queries
We now consider dynamically generated queries. The following
algebraic datatype represents predicates over integers as abstract
syntax trees.

type Predicate =
| Above of int
| Below of int
| And of Predicate× Predicate
| Or of Predicate× Predicate
| Not of Predicate

We take Above(a) to denote all ages greater than or equal to a,
and Below(a) to denote all ages strictly less than a, so each is the
negation of the other.

For instance, the following trees both specify predicates that
select everyone in their thirties:

let t0 : Predicate = And(Above(30),Below(40))
let t1 : Predicate = Not(Or(Below(30),Above(40)))

Given a tree representing a predicate we can compute the quo-
tation of a function representing the predicate. We make use of the
lift operator, which lifts a value of some base type O into a quoted
expression of type Expr<O >. The definition is straightforward.

let rec P(t : Predicate) : Expr< int→ bool > =
match t with
| Above(a)→ <@ fun(x)→ (%lift(a)) ≤ x @>
| Below(a)→ <@ fun(x)→ x < (%lift(a)) @>
| And(t, u)→ <@ fun(x)→ (%P(t))(x) && (%P(u))(x) @>
| Or(t, u) → <@ fun(x)→ (%P(t))(x) || (%P(u))(x) @>
| Not(t) → <@ fun(x)→ not((%P(t))(x)) @>

For instance, P(t0) returns

<@ fun(x)→ (fun(x)→ 30 ≤ x)(x) &&
(fun(x)→ x < 40)(x) @>

Applying normalisation to the above simplifies it to

<@ fun(x)→ 30 ≤ x && x < 40 @>.

Note how normalisation enables modular construction of a dynamic
query.

We can combine P with the previously defined satisfies to find
all people that satisfy a given predicate:

run(<@ (%satisfies)(%P(t0)) @>) (6)

Evaluating (6) yields the same query as (2) and (3). We may also
instantiate to a different predicate:

run(<@ (%satisfies)(%P(t1)) @>) (7)

Evaluating (7) yields the same answer as (6), though it normalises
to a slightly different term, where the test 30 ≤ w.age && w.age <
40 is replaced by not(w.age < 30 || 40 ≤ w.age).

This series of examples illustrates our key result: including ab-
straction in the quoted language and normalising quoted terms sup-
ports abstraction over values, abstraction over predicates, composi-
tion of queries, and dynamic generation of queries.

3. Nesting
We now consider nested data, and show further advantages of the
use of normalisation before execution of a query.

{departments =
[{dpt = “Product”}; {dpt = “Quality”};
{dpt = “Research”}; {dpt = “Sales”}];

employees =
[{dpt = “Product”; emp = “Alex”};
{dpt = “Product”; emp = “Bert”};
{dpt = “Research”; emp = “Cora”};
{dpt = “Research”; emp = “Drew”};
{dpt = “Research”; emp = “Edna”};
{dpt = “Sales”; emp = “Fred”}];

tasks =
[{emp = “Alex”; tsk = “build”};
{emp = “Bert”; tsk = “build”};
{emp = “Cora”; tsk = “abstract”};
{emp = “Cora”; tsk = “build”};
{emp = “Cora”; tsk = “design”};
{emp = “Drew”; tsk = “abstract”};
{emp = “Drew”; tsk = “design”};
{emp = “Edna”; tsk = “abstract”};
{emp = “Edna”; tsk = “call”};
{emp = “Edna”; tsk = “design”};
{emp = “Fred”; tsk = “call”}]}

Figure 3. Organisation as Flat Data

For purposes of illustration, we consider a simplified database
representing an organisation, with tables listing departments, em-
ployees belonging to each department, and tasks performed by each
employee. Its type is Org, defined as follows.

type Org = {departments : {dpt : string} list;
employees : {dpt : string; emp : string} list;
tasks : {emp : string; tsk : string} list }

We bind a variable to a reference to the relevant database.

let org : Expr<Org > = <@ database(“Org”) @>

The corresponding data is shown in Figure 3.
The following parameterised query finds departments where

every employee can perform a given task u.

let expertise′ : Expr< string→ {dpt : string} list > =
<@ fun(u)→

for d in (%org).departments do
if not(exists(

for e in (%org).employees do
if d.dpt = e.dpt && not(exists(

for t in (%org).tasks do
if e.emp = t.emp && t.tsk = u then yield { })

)) then yield { })
)) then yield {dpt = d.dpt} @>

Evaluating

run(<@ (%expertise’)(“abstract”) @>) (8)

finds departments where every employee can abstract:

[{dpt = “Quality”}; {dpt = “Research”}]
There are no employees in the Quality department, so it will be
contained in the result of this query regardless of the task specified.

Query expertise′ works as follows. The innermost for yields an
empty record for each task t performed by employee e that is equal
to u; the resulting list is empty if employee e cannot perform task
u. The middle for yields an empty record for each employee e in
department d that cannot perform task u; the resulting list is empty
if every employee in department d can perform task u. Therefore,



[{dpt = “Product”; employees =
[{emp = “Alex”; tasks = [“build”]}
{emp = “Bert”; tasks = [“build”]}]};

{dpt = “Quality”; employees = []};
{dpt = “Research”; employees =
[{emp = “Cora”; tasks = [“abstract”; “build”; “design”]};
{emp = “Drew”; tasks = [“abstract”; “design”]};
{emp = “Edna”; tasks = [“abstract”; “call”; “design”]}]};

{dpt = “Sales”; employees =
[{emp = “Fred”; tasks = [“call”]}]}]

Figure 4. Organisation as Nested Data

the outermost for yields departments where every employee can
perform task u. We stick a prime on the name to warn that the query
is hard to read. Using nested intermediate data structures will help
us formulate a more readable equivalent.

3.1 Nested Structures
An alternative way to represent an organisation uses nesting, where
each department record contains a list of employees and each em-
ployee record contains a list of tasks:

type NestedOrg =
{dpt : string; employees :
{emp : string; tasks : string list} list} list

We convert the first representation into the second as follows:

let nestedOrg : Expr<NestedOrg > =
<@ for d in (%org).departments do

yield {dpt = d.dpt; employees =
for e in (%org).employees do
if d.dpt = e.dpt then
yield {emp = e.emp; tasks =

for t in (%org).tasks do
if e.emp = t.emp then
yield t.tsk}}} @>

If org is bound to the data in Figure 3, then nestedOrg is bound to
the data in Figure 4. We cannot write run(nestedOrg) to compute
this value directly, because run requires an argument that is flat,
and the type of nestedOrg is nested. However, it can be convenient
to use nestedOrg to formulate other queries, as we now show.

3.2 A Query over a Nested Structure
For convenience, we define several higher-order queries. The first
takes a predicate and a list and returns true if the predicate holds
for any item in the list.

let any : Expr< (A list, A→ bool)→ bool > =
<@ fun(xs, p)→

exists(for x in xs do if p(x) then yield { }) @>

The second takes a predicate and a list and returns true if the
predicate holds for all items in the list. It is defined in terms of
any using De Morgan duality.

let all : Expr< (A list, A→ bool)→ bool > =
<@ fun(xs, p)→

not((%any)(xs, fun(x)→ not(p(x)))) @>

The third takes a value and a list and returns true if the value
appears in the list. It is also defined in terms of any.

let contains : Expr< (A list, A)→ bool > =
<@ fun(xs, u)→ (%any)(xs, fun(x)→ x = u) @>

All three of these resemble well-known operators from functional
programming, and similar operators with the same names are pro-
vided in Microsoft’s LINQ framework. We define all three as quo-
tations, so that they may be used in queries.

We define a query equivalent to expertise′ as follows:

let expertise : Expr< string→ {dpt : string} list > =
<@ fun(u)→

for d in (%nestedOrg)
if (%all)(d.employees,

fun(e)→ (%contains)(e.tasks, u) then
yield {dpt = d.dpt} @>

Evaluating

run(<@ (%expertise)(“abstract”) @>) (9)

yields the same query as the previous example, (8).
In order for this to work, normalisation must not only perform

beta-reduction, but also perform various reductions on sequence ex-
pressions that are well known from the literature on conservativity
results. The complete set of reductions that we require is discussed
in Section 5.

4. From XPath to SQL
So far, all of our examples (except satisfies) could have been writ-
ten in a higher-order variant of SQL, implemented using normal-
isation; they do not illustrate the full power of our approach. We
now consider the problem of dynamic generation of SQL queries
that simulate XPath queries over XML data represented as rela-
tions. This requires not only support for higher-order queries within
SQL, but also the capability to construct queries dynamically using
recursion and other host language features.

We represent tree-structured XML in a relation using
“stretched” pre-order and post-order indexes; see, for example,
Grust et al. (2004, sec. 4.2). Each node of the tree corresponds to a
row in a table xml with schema:

type Node =
{id : int, parent : int, name : string, pre : int, post : int}

The id field uniquely identifies each node; the parent field refers
to the identifier of the node’s parent (or -1 for the root node); the
name field stores the element tag name; and the pre and post fields
store the position of the opening and closing brackets of the node
in its serialisation. For example, Figure 5 shows an XML tree and
its tabular representation.

The datatypes Axis and Path, defined below, represent the ab-
stract syntax of a fragment of XPath.

type Axis =
| Self
| Child
| Descendant
| DescendantOrSelf
| Following
| FollowingSibling
| Rev of Axis

type Path =
| Seq of Path× Path
| Axis of Axis
| Name of string
| Filter of Path

The Axis datatype defines the primitive forward axes and Rev
to reverse the axes (the reverse of child is parent, the reverse of
descendant is ancestor, and so on). The Path datatype defines Seq
to concatenate two paths, Axis to define an axis step, Name to test
whether an element’s name is equal to a given string, and Filter to
test whether a path expression is satisfiable from a given node.

Figure 6 gives the complete code of an evaluator for this frag-
ment of XPath, which generates one SQL query per XPath query.
The functions axis and path are defined by case analysis over the
datatypes Axis and Path, respectively; they yield predicates that
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id parent name pre post
0 -1 “#doc” 0 13
1 0 “a” 1 12
2 1 “b” 2 5
3 2 “c” 3 4
4 1 “d” 6 11
5 4 “e” 7 8
6 4 “f” 9 10

Figure 5. XML Tree and Tabular Representation

let rec axis(ax : Axis) : Expr< (Node,Node)→ bool > =
match ax with
| Self→ <@ fun(s, t)→ s.id = t.id @>
| Child→ <@ fun(s, t)→ s.id = t.parent @>
| Descendant→ <@ fun(s, t)→

s.pre < t.pre && t.post < s.post @>
| DescendantOrSelf→ <@ fun(s, t)→

s.pre ≤ t.pre && t.post ≤ s.post @>
| Following→ <@ fun(s, t)→ s.post < t.pre @>
| FollowingSibling→ <@ fun(s, t)→

s.post < t.pre && s.parent = t.parent @>
| Rev(axis)→ <@ fun(s, t)→ (%axis(ax))(t, s) @>

let rec path(p : Path) : Expr< (Node,Node)→ bool > =
match p with
| Seq(p, q)→ <@ fun(s, u)→ (%any)((%db).xml,

fun(t)→ (%path(p))(s, t) && (%path(q))(t, u)) @>
| Axis(ax)→ axis(ax)
| Name(name)→ <@ fun(s, t)→

s.id = t.id && s.name = name @>
| Filter(p)→ <@ fun(s, t)→ s.id = t.id &&

(%any)((%db).xml, fun(u)→ (%path(p))(s, u)) @>

let xpath(p : Path) : Expr< int list > =
<@ for root in (%db).xml do

for s in (%db).xml do
if root.parent = -1 && (%path(p))(root, s) then
yield s.id @>

Figure 6. An Evaluator for XPath

hold when two nodes are related by the given axis or path. The
function xpath translates a Path p to a query expression that re-
turns each node in the table that matches p, starting from the root.

In our tests we consider the following example paths.

xp0 = /*/* (10)
xp1 = //*/parent::* (11)
xp2 = //*[following-sibling::d] (12)
xp3 = //f[ancestor::*/preceding::b] (13)

Translation of XPath to Path is straightforward; for example, xp0 is
Seq(Axis(Child),Axis(Child)). The four queries yield the results
[2, 4], [1, 2, 4], [2], and [6], respectively on the example data in
Figure 5.

While this is a small fragment of XPath, there is no obstacle
to adding other features such as attributes, boolean operations on
filters, or tests on text data.

5. Core Language
In this section we give a formal account of T-LINQ as a lambda
calculus with comprehension, quotation, and constructs to access

(base) O ::= int | bool | string
(type) A,B ::= O | A→ B | {` : A} | A list | Expr<A >

(table) T ::= {` : O} list
(env’t) Γ,∆ ::= · | Γ, x : A
(term) L,M,N ::= c | op(M) | liftM | x | fun(x)→ N

| LM | rec f(x)→ N | {` = M} | L.`
| yieldM | [ ] |M @N | for x inM doN
| existsM | if L thenM | runM
| <@M @> | database(db) | (%M)

Figure 7. Syntax of T-LINQ

a database and run queries. Queries are constructed by quotation,
and—crucially!—the quoted term is normalised as part of the pro-
cess of issuing a query.

In practice, host and quoted languages are usually identical, but
this is a design choice. In T-LINQ, there are small, but important,
differences between the host and quoted languages.

5.1 Typing Rules
The syntax of types and terms is given in Figure 7 and the typing
rules are given in Figure 8. There are two typing judgements, one
for host terms and one for quoted terms. Judgement Γ ` M : A
states that host term M has type A in type environment Γ, and
judgement Γ; ∆ ` M : A states that quoted term M has type A
in host type environment Γ and quoted type environment ∆. For
simplicity, we assume that all queries are on a single database db;
in practice, we check dynamically that each query refers to a single
database. We assume a signature Σ that maps each constant c, each
primitive operator op, and the database db to its type.

Most of the typing rules are standard, and mirrored across both
judgements; we list here the rules that differ. Recursion is only
available in a host term (REC); other operations available to the
host but not the database may be modelled similarly. The database
is only available in a quoted term (DATABASE). A term of base
type O can be lifted to a quoted term of type Expr<O > (LIFT). A
quoted term of table type T can be evaluated as a query (RUN). The
rule for quoting requires the quoted type environment to be empty,
ensuring quoted terms are closed (QUOTE). The rule for splicing
is the only place the host type environment Γ is referenced in the
typing rules for quoted terms (ANTIQUOTE).

5.2 Operational Semantics
The syntax of values and evaluation contexts is given in Figure 9.
Values are standard, save that we add values <@ Q @>, where Q is
a quotation value, a quoted term in which all anti-quotes have been
resolved. We write [V ] to abbreviate yield V1@ · · ·@yield Vn@[ ].
The semantics is parameterised by an interpretation δ for each
primitive operation op, and an interpretation Ω for the database
db, both of which respect types: if Σ(op) = O → O and ` V : O
and V = δ(op, V ) then ` V : O, and ` Ω(db) : Σ(db).

Reduction M −→ N is the relation in Figure 10. We write
−→∗ for the reflexive and transitive closure of −→. The rules are
standard apart from those for quotation and query evaluation. All of
the rules are interpreted relative to a fixed database; the eval func-
tion evaluates the query against this database. Evaluation contexts
E enforce left-to-right call-by-value evaluation, and quotation con-
texts Q are contexts over quoted terms that have no anti-quotation
to the left of the hole. Rule (lift) converts a constant into a quoted
constant, and rule (splice) resolves an anti-quote once its body has
been evaluated to a quotation. Rule (run) evaluates a quotation
value Q by first normalising Q to yield an equivalent SQL query
S = norm(Q), and then evaluating S on the database to yield the



Γ `M : A

CONST
Σ(c) = A

Γ ` c : A

OP

Σ(op) = (O)→ O Γ `M : O

Γ ` op(M) : O

LIFT
Γ `M : O

Γ ` liftM : Expr<O >

VAR
x : A ∈ Γ

Γ ` x : A

FUN
Γ, x : A ` N : B

Γ ` fun(x)→ N : A→ B

APP
Γ ` L : A→ B Γ `M : A

Γ ` LM : B

REC
Γ, f : A→ B, x : A ` N : B

Γ ` rec f(x)→ N : A→ B

RECORD

Γ `M : A

Γ ` {` = M} : {` : A}

PROJECT

Γ ` L : {` : A}
Γ ` L.`i : Ai

SINGLETON
Γ `M : A

Γ ` yieldM : A list

EMPTY

Γ ` [ ] : A list

UNION
Γ `M : A list Γ ` N : A list

Γ `M @N : A list

FOR
Γ `M : A list Γ, x : A ` N : B list

Γ ` for x inM doN : B list

EXISTS
Γ `M : A list

Γ ` existsM : bool

IF
Γ ` L : bool Γ `M : A list

Γ ` if L thenM : A list

RUN
Γ `M : Expr<T >

Γ ` runM : T

QUOTE

Γ; · `M : A

Γ ` <@M @> : Expr<A >

Γ; ∆ `M : A

CONSTQ
Σ(c) = A

Γ; ∆ ` c : A

OPQ
Σ(op) = (O)→ O Γ; ∆ `M : O

Γ; ∆ ` op(M) : O

VARQ
x : A ∈ ∆

Γ; ∆ ` x : A

FUNQ
Γ; ∆, x : A ` N : B

Γ; ∆ ` fun(x)→ N : A→ B

APPQ
Γ; ∆ ` L : A→ B Γ; ∆ `M : A

Γ; ∆ ` LM : B

RECORDQ
Γ; ∆ `M : A

Γ; ∆ ` {` = M} : {` : A}

PROJECTQ
Γ; ∆ ` L : {` : A}
Γ; ∆ ` L.`i : Ai

SINGLETONQ
Γ; ∆ `M : A

Γ; ∆ ` yieldM : A list

EMPTYQ

Γ; ∆ ` [ ] : A list

UNIONQ
Γ; ∆ `M : A list Γ; ∆ ` N : A list

Γ; ∆ `M @N : A list

FORQ
Γ; ∆ `M : A list Γ; ∆, x : A ` N : B list

Γ; ∆ ` for x inM doN : B list

EXISTSQ
Γ; ∆ `M : A list

Γ; ∆ ` existsM : bool

IFQ
Γ; ∆ ` L : bool Γ; ∆ `M : A list

Γ; ∆ ` if L thenM : A list

DATABASE

Σ(db) = {` : T}
Γ; ∆ ` database(db) : {` : T}

ANTIQUOTE

Γ `M : Expr<A >

Γ; ∆ ` (%M) : A

Figure 8. Typing Rules for T-LINQ

value V = eval(Ω, S). Define eval(Ω, Q) = V when Ω(Q) −→∗
V , where Ω(Q) replaces each occurrence of database(db) in Q
by Ω(db). The following section defines norm(Q), and shows
that normalisation preserves types and meaning: if ·; · ` Q : T and
S = norm(Q) then ` S : T and eval(Ω, S) = eval(Ω, Q).

It is straightforward to show that type soundness holds, via the
usual method of preservation and progress.

PROPOSITION 1. If Γ ` M : A and M −→ N then Γ ` N : A.
If Γ `M : A then either M is a value or M −→ N for some N .

5.3 Query Normalisation
In this section we establish the Scylla and Charybdis theorem:
Every quoted term of flat type can be normalised to a term that
is isomorphic to a single SQL query.

Query normalisation is central to our technique. Similar tech-
niques go back to Wong (1996), and the work here is based directly
on Cooper (2009) and Lindley and Cheney (2012). The query nor-
malisation function norm is based on two reduction relations, sym-
bolic reduction, P  Q, and ad-hoc reduction, P ↪→ Q. We write
 ∗ and ↪→∗ for the reflexive and transitive closure of  and ↪→
respectively. Define norm(P ) = R when P  ∗ Q and Q ↪→∗ R,

where Q and R are in normal form with respect to and ↪→, re-
spectively.

Symbolic reduction P  Q is the compatible closure of the
rules in Figure 11. The rules are straightforward, including beta-
reduction for functions, records, and booleans, plus the usual laws
for monads with sums (Trinder 1991). Terms in normal form under
this relation satisfy the subformula property: with the exception of
predicates (such as < or exists), the type of a subterm must be a
subformula of either the type of a free variable or of the type of the
term (Prawitz 1965). Hence, symbolic reduction eliminates nesting
from a term that returns a value of table type.

Ad-hoc reduction, P ↪→ Q, is the compatible closure of the
rules in Figure 12. These reductions account for the lack of unifor-
mity in SQL. Rule (for-@), which hoists a union out of a compre-
hension body, is the only rule that is not sound for a list semantics,
since it changes the order in which elements are generated.

Rewriting preserves types and meaning.

PROPOSITION 2. If ` P : A and P  Q or P ↪→ Q then
` Q : A and eval(Ω, P ) = eval(Ω, Q).

The normal form of a query is easy to compute because rewrites
may be applied in any order and rewriting always terminates.



(value)
V,W ::= c | fun(x)→M | rec f(x)→M | {` = V }

| [V ] | <@ Q @>
(quotation value)
P,Q,R ::= c | op(Q) | lift Q | x | fun(x)→ R | P Q

| {` = Q} | P.` | yield Q | [ ] | Q @R
| for x in Q doR | exists Q | if P thenQ
| database(db)

(evaluation context)
E ::= [ ] | op(V , E ,M) | lift E | E M | V E

| {` = V , `′ = E , `′′ = M} | E .` | yield E
| E @M | V @ E | for x in E doN | exists E
| if E thenM | run E | <@Q[(%E)] @>

(quotation context)
Q ::= [ ] | op(Q,Q,M) | liftQ | fun(x)→ Q

| QM | QQ | {` = Q, `′ = Q, `′′ = M}
| Q.` | yieldQ | Q @M | Q @Q
| for x inQ doN | for x in Q doQ
| existsQ | ifQ thenM | if Q thenQ | runQ

Figure 9. Values and Evaluation Contexts

op(V ) −→ δ(op, V )
(fun(x)→ N) V −→ N [x := V ]

(rec f(x)→ N) V −→ M [f := rec f(x)→ N, x := V ]
{` = V }.`i −→ Vi

if true thenM −→ M
if false thenM −→ [ ]

for x in yield V doM −→ M [x := V ]
for x in [ ] doN −→ [ ]

for x in L @M doN −→
(for x in L doN) @ (for x inM doN)

exists [] −→ false
exists [V ] −→ true, |V | > 0

run <@ Q @> −→ eval(norm(Q)) (run)
lift c −→ <@ c @> (lift)

<@Q[(%<@ Q @>)] @> −→ <@Q[Q] @> (splice)

M −→ N

E [M ] −→ E [N ]

Figure 10. Operational Semantics for T-LINQ

PROPOSITION 3. Both  and ↪→ are confluent and strongly nor-
malising for typed terms.

The proof is straightforward. Factoring into two relations makes the
strong normalisation proof easier than in Cooper (2009).

The grammar of normalised terms, given in Figure 13, is essen-
tially isomorphic to a subset of SQL. The correspondence is not
quite exact, because the SQL standard has no notation for empty
records, and lacks constructs for an empty table or to access a table
or table variable directly (the first constructs of S, X , and Y , re-
spectively); but these idiosyncrasies are easy to work around, and
are handled already by LINQ. It is straightforward to establish that
if Q is a closed term of table type T , then its normalisation exists
and matches the grammar of S.

PROPOSITION 4 (Scylla and Charybdis). If ` Q : T then there
exists an S such that S = norm(Q).

(fun(x)→ R) Q  R[x := Q]
{` = Q}.`i  Qi

for x in (yield Q) doR  R[x := Q] (for-yld)
for y in (for x in P doQ) doR  

for x in P do (for y in Q doR) (for-for)
for x in (if P thenQ) doR  

if P then (for x in Q doR) (for-if)
for x in [ ] doN  [ ]

for x in (P @Q) doR  
(for x in P doR) @ (for x in Q doR)

if true thenQ  Q
if false thenQ  [ ]

Figure 11. Normalisation Stage 1: symbolic reduction

for x in P do (Q @R) ↪→ (for-@)
(for x in P doQ) @ (for x in P doR)

for x in P do [ ] ↪→ [ ]
if P then (Q @R) ↪→ (if P thenQ) @ (if P thenR)

if P then [ ] ↪→ [ ]
if P then (if Q thenR) ↪→ if (P && Q) thenR (if-if)

if P then (for x in Q doR) ↪→ for x in Q do (if P thenR)
(if-for)

Figure 12. Normalisation Stage 2: ad-hoc reduction

(SQL query) S ::= [ ] | X | X1 @X2

(collection) X ::= database(db) | yield Y | if Z then yield Y
| for x in database(db).` doX

(record) Y ::= x | {` = Z}
(base) Z ::= c | x.` | op(X) | existsS

Figure 13. Syntax of Normalised Terms

5.4 An Example
As an example of normalisation, we consider evaluation of query
(5) from Section 2.5.

run(<@ (%compose)(“Edna”, “Bert”) @>)

After splicing, the quotation becomes:

(fun(s, t)→
for a in (fun(s)→

for u in database(“People”).people do
if u.name = s then yield u.age)(s) do

for b in (fun(s)→
for u in database(“People”).people do
if u.name = s then yield u.age)(t) do

(fun(a, b)→
for w in database(“People”).people do
if a ≤ w.age && w.age < b then
yield {name : w.name})(a, b))

(“Edna”, “Bert”)

For stage 1 (Figure 11), applying four beta-reductions yields:

for a in (for u in database(“People”).people do
if u.name = “Edna” then yield u.age) do

for b in (for u in database(“People”).people do
if u.name = “Bert” then yield u.age) do

for w in database(“People”).people do
if a ≤ w.age && w.age < b then
yield {name : w.name}



Continuing stage 1, applying each of rules (for-for), (for-if), and
(for-yld) twice, and renaming to avoid capture, yields:

for u in database(“People”).people do
if u.name = “Edna” then
for v in database(“People”).people do
if v.name = “Bert” then
for w in database(“People”).people do
if u.age ≤ w.age && w.age < v.age then
yield {name : w.name}

For stage 2 (Figure 12), applying rule (if-for) thrice and rule (if-if)
twice yields:

for u in database(“People”).people do
for v in database(“People”).people do
for w in database(“People”).people do
if u.name = “Edna” && v.name = “Bert” &&

u.age ≤ w.age && w.age < v.age then
yield {name : w.name}

This is in normal form, and easily converted to SQL. Running it
yields the answer given previously.

6. Quoted Language vs. Host Language
We write in a style where we abstract in the quoted language
whenever possible. As we shall see, this is essential if several
functions are to be composed into a single query, as in Section 2.5.
We abstract in the host language only when we need a feature
not present in the quoted language, such as recursion, as used to
construct dynamic queries in Sections 2.6 and 4.

Another style, which might at first appear appealing, is to al-
ways abstract in the host language. For instance, one might redefine
range from Section 2.3 as follows.

let range′(a : Expr< int >, b : Expr< int >) : Expr<Names > =
<@ for w in (%db).people do

if (%a) ≤ w.age && w.age < (%b) then
yield {name : w.name} @>

(Or one might define a variant where a and b have type int and
lifting is used, which raises similar issues.) Before, we wrote an
invocation like this:

run(<@ (%range)(30, 40) @>).

Now, we write an invocation like this:

run(range′(<@ 30 @>, <@ 40 @>)).

The latter may be slightly more efficient, as it directly yields a
quotation in normal form, and no beta-reduction is required. For
this reason, we had originally assumed that one should abstract in
the host language, but late in the process of writing this paper we
realised this is a mistake. We stick a prime on the name to warn that
this form of definition hinders composition.

Let’s see what goes wrong with composition. In Section 2.5 we
used range to define compose. Attempting a revision using range′

yields the following.

let compose′ : Expr< (string, string)→ Names > =
<@ fun(s, t)→ for a in (%getAge)(s) do

for b in (%getAge)(t) do
(%range′(<@ a @>, <@ b @>)) @>

Warning: the above is not legal in F# (or T-LINQ)! Previously, all
the quotations we saw were closed, since every quoted variable is
bound within the quotation; but the two quotations <@ a @> and
<@ b @> passed to range′ are open, since they contain free quoted
variables. In this case, the variables become bound after splicing
into the surrounding quotation, but, in general, open quotations

come with no guarantee that free variables meet their binding
occurrences. For this reason, open quotations are illegal in F# and in
T-LINQ, and there is no easy way to use range′ to define compose′.

Typing closed quotation is straightforward in current languages,
and is supported in F# or in any language with GADTs (Cheney
and Hinze 2003). In contrast, open quotation in a typed language
requires some form of specialised type system; experimental lan-
guages that support open quotation include MetaML (Taha and
Sheard 2000) or Ur (Chlipala 2010), and a recent experimental
feature in GHC supports MetaML typing rules for quotations. We
sketch a simple type system that supports open quotation in Sec-
tion 7, and show how closed quotation can simulate that form of
open quotation, which suggests how closed quotation may be ade-
quate for situations where one might have thought open quotation
was required.

While open quotation avoids the cost of some beta-reductions, it
does not avoid the need for the other normalisation rules discussed
in Section 5.3. Further, the cost of normalising a quoted term is low
compared to the cost of evaluating the resulting SQL query against
the database, as demonstrated in Section 9. Thus, we believe closed
quotation and normalisation provide a practical alternative to more
elaborate systems that support open quotation.

7. Open Quotation
Section 6 discussed the difference between closed and open quota-
tion. T-LINQ and P-LINQ, like F#, support only closed quotation.
Here we generalise T-LINQ to support a form of open quotation,
and we show how this form may be simulated by closed quota-
tion. Choi et al. (2011) give a similar result. Our formalisation of
open quotation is not as powerful as that found in systems such
as MetaML or Ur, but the translation is suggestive of why closed
quotation may be adequate for dealing with cases (such as compo-
sition of queries or dynamic generation of queries) that one may
previously have thought required open quotation.

For the extension, we add a type environment to the type of
quoted terms, generalising Expr<A > to Expr<∆;A >, where ∆
specifies the types of the free variables in the quoted term. Only
four typing rules need to change.

LIFT
Γ `M : O

Γ ` lift(M) : Expr< ·;O >

RUN
Γ `M : Expr< ·;T >

Γ ` runM : T

QUOTE

Γ; ∆ `M : A

Γ ` <@M @>∆ : Expr<∆;A >

ANTIQUOTE

Γ `M : Expr<∆;A >

Γ; ∆ ` (%M)∆ : A

In order to allow syntax-directed typechecking, we add type envi-
ronment annotations to quotation and antiquotation expressions.

To simulate the extended language in the original, we represent
an open quotation of type Expr<∆;A > by a closed quotation of
type Expr<∆ → A >, explicitly abstracting over each of the free
variables in the quoted type environment. We specify translations
of types, host terms, and query terms from the extended language
back into the original language. There is only one case of interest
for each translation.

JExpr<∆;A >K = Expr< J∆K→ JAK >
J<@M @>∆K = <@ fun(∆)→ JMK @>

J(%M)∆K = (%M) ∆

All of the other cases are defined homomorphically. Here ∆ on the
right-hand side stands in the first line for a tuple of the types in the
environment; in the second line for a tuple of the bindings in the
environment, over which the translation is abstracted; and in the
third line for a tuple of the variables in the environment, to which



the translation is applied. All tuples must be consistently ordered,
say alphabetically on the names of the variables in ∆.

PROPOSITION 5. The translation preserves types, and the ex-
tended language is simulated by the original language.

• If Γ `M : A then JΓK ` JMK.
• If Γ; ∆ `M : A then JΓK; J∆K ` JMK : JAK.
• If Γ `M : A and M −→ N then JMK −→ JNK.
• If Γ; ∆ `M : A and M −→ N then JMK −→ JNK.

8. Comparison to Microsoft LINQ
T-LINQ abstracts from several distracting issues in the implemen-
tation of Microsoft LINQ for C#, Visual Basic, and F#.

Microsoft’s LINQ library includes interfaces IEnumerable<A>
and IQueryable<A> that provide standard query operators includ-
ing selection, join, filtering, grouping, sorting, and aggregation.
These query operators are defined to act both on sequences and
on quotations that yield sequences. LINQ query expressions in C#
or Visual Basic are translated to code that calls the methods in these
interfaces. For example, a C# LINQ query

from x in e where p(x) select f(x)

translates to the sequence of calls

e.Where(x⇒ p(x)).Select(x⇒ f(x))

Depending on the context, lambda-abstractions in C# and Visual
Basic are treated either as functions or as quoted functions.

Any external data source that can implement some of the query
operations can be connected to LINQ using a query provider. Im-
plementing a query provider can be difficult, in part because of
the overhead of dealing with the Expression<A> type. Eini (2011)
characterises the experience of writing a custom query provider
as “doom, gloom with just a tad of despair”. Microsoft supplies
a LINQ to SQL query provider for SQL Server. Microsoft’s query
provider is proprietary, so its behaviour is a black box, but it does
appear to perform some beta-reduction and other normalisation.

As we have already described, F# supports LINQ using syntac-
tic sugar for comprehensions (called computation expressions (Pet-
ricek and Syme 2012)), quotations, and reflection. In the F# Power-
Pack library made available for F# 2.0, some LINQ capabilities are
supported by a translator from the F# Expr<A > type to the LINQ
Expression<A> type. This implementation has some bugs and lim-
itations, for instance, it fails to translate arguments of exists in the
test of a conditional.

F# 3.0 supports LINQ through an improved translation based
on computation expressions (Petricek and Syme 2012). In F# 3.0,
one can simply write query{e} to indicate that a computation ex-
pression e should be interpreted as a query; the standard library
class QueryBuilder translates e to a C# LINQ expression and eval-
uates it. This implementation also has some bugs and limitations,
for instance, it forbids some uses of splicing, and does not correctly
process some queries that start with a conditional.

9. Implementation and Results
To validate our design, we implemented a pre-processor that takes
any quoted F# sequence expression over the standard query oper-
ators and normalises it as described in Section 5.3. In theory, our
normaliser could be followed by either the F# 2.0 or F# 3.0 back-
end, but the bugs noted in the previous section prevent some of our
sample queries from working with each. The F# 2.0 PowerPack
is distributed as a separate library and easy to modify, while the
F# 3.0 backend is built-in and difficult to modify. Hence, for most
of our experiments, we opted to use F# 2.0 LINQ syntax and a
modified version of the F# 2.0 backend with our pre-processor. To

Example F# 2.0 F# 3.0 P-LINQ norm
differences (1) 17.6 20.6 18.1 0.5
range (2) × 5.6 2.9 0.3
satisfies (3) 2.6 × 2.9 0.3
satisfies (4) 4.4 × 4.6 0.3
compose (5) × × 4.0 0.8
P(t0) (6) 2.8 × 3.3 0.3
P(t1) (7) 2.7 × 3.0 0.3
expertise′ (8) 7.2? 9.2 8.0? 0.6
expertise (9) × 66.7av 8.3? 0.9
xp0 (10) × 8.3 7.9 1.9
xp1 (11) × 14.7 13.4 1.1
xp2 (12) × 17.9 20.7? 2.2
xp3 (13) × 3744.9 3768.6? 4.4

All times in milliseconds. × marks failures.
? marks cases requiring modified F# 2.0 PowerPack library.
av marks the case where a query avalanche occurs.
|people| = 10000, |couples| = 5000, |employees| = 5000,
|tasks| = 4931, |xml| = 6527

Table 1. Experimental Results.

experiment with grouping, aggregation and other operations that
are only supported in F# 3.0, we have also developed a proto-
type that provides subclasses of the F# 3.0 QueryBuilder library
class, along with variants of the query{ · · · } keyword, that per-
form normalisation before calling F# 3.0’s LINQ implementation.
The QueryBuilder implementation employs some subtle tricks to
support type-directed dispatch so that query{ · · · } works for both
in-memory and external database calls. Unfortunately, these tricks
make it difficult to smoothly override the QueryBuilder class to
provide drop-in compatible behaviour; in our implementation, we
provide different variants of the query keyword for use in differ-
ent contexts. This limitation could easily be overcome by a change
to the F# 3.0 QueryBuilder class, and we are discussing this pos-
sibility with Microsoft. We use the term P-LINQ to refer to both
implementations, and specify the back-end F# LINQ implementa-
tion used when it is relevant.

All experiments were run on a Dell OptiPlex 790 with Intel Core
i5-2400 CPU at 3.10 GHz, 4GB RAM and a 7200 RPM hard drive
with 8MB cache, and using Microsoft .NET 4.0 runtime, Visual
Studio 2012 v11.0.50727.1, and SQL Server 2012, all running
on the same machine to avoid any network-related latency. All
reported times are the medians of 21 trials. All source code for the
examples, the data, and the modified F# 2.0 PowerPack library is
available online (Cheney et al. 2012).

Table 1 summarises our experimental results. We wrote and ran
versions of each example using the F# 2.0 PowerPack LINQ li-
brary, the F# 3.0 LINQ library, and P-LINQ (using the F# 2.0 back-
end). We randomly generated data for the couples and organisation
databases, and used an existing repository of XML data, with sizes
as listed in the table. Each entry in the table either indicates that
the query failed (×), or gives the total time in milliseconds for suc-
cessful evaluation, including time to generate the SQL query (or
queries, in the case of an avalanche), to evaluate the query, and to
construct a value from the result. For P-LINQ, the total includes
time to normalise the quoted expression; this is also shown sepa-
rately in the column labelled norm .

F# 2.0 failed on seven examples, and F# 3.0 failed on five,
though each succeeds on examples on which the other fails. The
modified PowerPack library was required in one case by F# 2.0
and in four cases by P-LINQ. F# 3.0 generated an avalanche of
SQL queries for query (9); this example query involves nested in-
termediate data but its result is flat, in contrast to cases of avalanche



#depts deptsize F#3.0-100 ILinq-100
4 100 16.3037 5.9357 12.8204925 0.32427346
8 100 35.4868 6.5981 -116.78938
12 100 61.2244 7.0918
16 100 98.9949 7.257
20 100 118.424 8.9898
24 100 159.1507 9.4781
28 100 193.7837 10.3472
32 100 240.0405 12.1876
36 100 293.1842 12.5183
40 100 350.8748 14.122
44 100 395.9706 15.7568
48 100 458.9334 17.8776
52 100 549.4561 19.2158
56 100 623.3749 21.4124
60 100 704.9958 22.8072
64 100 805.5193 25.9948
68 100 885.2269 28.4827
72 100 732.342 29.4975
76 100 755.3281 33.706
80 100 872.4033 36.2999
84 100 904.3673 40.2035
88 100 980.5845 41.9651
92 100 1065.709 47.8135
96 100 1144.1748 50.6842
100 100 1236.8844 50.5772
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Figure 14. Query avalanche results. Each department is of size 100, with each employee assigned 0, 1, or 2 tasks at random.

Q# F# 3.0 P-LINQ norm
Q1 2.0 2.4 0.3
Q2 1.5 1.7 0.2
Q5 1.7 2.1 0.3
Q6 1.7 2.1 0.3
Q7 1.5 1.8 0.2
Q8 2.3 2.4 0.2
Q9 2.3 2.7 0.3
Q10 1.4 1.7 0.2
Q11 1.4 1.7 0.2
Q12 4.4 4.9 0.4
Q13 2.5 2.9 0.4
Q14 2.5 2.9 0.3
Q15 3.5 4.0 0.5
Q16 3.5 4.0 0.5
Q17 6.2 6.7 0.4
Q18 1.5 1.8 0.2
Q19 1.5 1.8 0.2
Q20 1.5 1.8 0.2
Q21 1.6 1.9 0.3
Q22 1.6 1.9 0.3
Q23 1.6 1.9 0.3

Q# F# 3.0 P-LINQ norm
Q24 1.8 2.0 0.3
Q25 1.4 1.6 0.2
Q27 1.8 2.1 0.2
Q29 1.5 1.7 0.2
Q30 1.8 2.0 0.2
Q32 2.7 3.1 0.3
Q33 2.8 3.1 0.3
Q34 3.1 3.6 0.5
Q35 3.1 3.6 0.4
Q36 2.2 2.4 0.2
Q37 1.3 1.6 0.2
Q38 4.2 4.9 0.6
Q39 4.2 4.7 0.4
Q40 4.1 4.6 0.4
Q41 6.3 7.3 0.6
Q42 4.7 5.5 0.5
Q43 7.2 6.9 0.7
Q44 5.4 6.2 0.7
Q45 2.2 2.6 0.3
Q46 2.3 2.7 0.4
Q47 2.1 2.5 0.3

Q# F# 3.0 P-LINQ norm
Q48 2.1 2.5 0.3
Q49 2.4 2.7 0.3
Q50 2.2 2.5 0.3
Q51 2.0 2.4 0.3
Q52 6.1 5.9 0.4
Q53 11.9 11.2 0.6
Q54 4.4 4.8 0.4
Q55 5.2 5.6 0.4
Q56 4.6 5.1 0.5
Q57 2.5 2.9 0.4
Q58 2.5 2.9 0.4
Q59 3.1 3.6 0.5
Q60 3.6 4.4 0.7
Q61 5.8 6.3 0.3
Q62 5.4 5.9 0.2
Q63 3.4 3.8 0.4
Q64 4.3 4.9 0.6
Q65 10.2 10.1 0.4
Q66 8.9 8.7 0.6
Q67 14.7 13.1 1.1

Table 2. Comparison of F# 3.0 and P-LINQ (using F# 3.0 as a back-end) on the 62 example database queries in the F# 3.0 documentation
(Microsoft 2013). There are 67 examples in total; five query expressions (Q3, Q4, Q26, Q28, Q31) are excluded because they execute on
in-memory lists rather than generate SQL.

reported by Grust et al. (2010), all of which return nested results.
As guaranteed by Proposition 4, translation for P-LINQ always suc-
ceeds and never generates avalanches for queries with flat results.

Generally, normalisation time is dwarfed by query evaluation
time, in some cases by several orders of magnitude. The F# type
Expr<A > maintains information irrelevant to our application, so
we elected to normalise by converting the F# type Expr<A > to our
own custom representation, normalising that, and converting back
to Expr<A >. Profiling suggests most of the time in our normaliser
is spent converting to our custom representation. The only way
to traverse Expr<A > expressions in F# is through active pattern
matching, which appears to be expensive.

To evaluate the impact of query avalanches, we reran query (9)
with F# 3.0 and P-LINQ with varying numbers of departments,
ranging from 4 to 64. For F# 3.0, the number of queries performed
is d+1 where d is the number of departments. The results are shown

in Figure 14. Both approaches scale roughly linearly in the number
of departments (and hence, total data size); we summarise the re-
sults in terms of the average time s to process each department. The
value of s for F# 3.0 is 12.8 milliseconds per department, while that
for P-LINQ is 0.3. These results confirm that P-LINQ’s normalisa-
tion can reap significant savings by avoiding query avalanches.

T-LINQ does not include constructs such as sorting, grouping,
or aggregation, which are important in practical use of LINQ. We
have designed P-LINQ so that it rewrites any subterm it recognises,
and carries through other constructs unchanged. Our results suggest
this is a practical alternative: we tested this prototype on all 62 of
the example database queries on the F# 3.0 Query Expressions doc-
umentation page (Microsoft 2013). (There are also five tests that
do not generate SQL queries, which we excluded from the exper-
iments.) All of these queries are concrete, that is, none involves
abstraction, and they are evaluated on a small database of about 30



records. The results are shown in Table 2. We summarise the results
in terms of the ratio r of P-LINQ to F# 3.0 evaluation time. The ge-
ometric mean of r over all tests is 1.13 (so on average P-LINQ is
13% slower), and the minimum and maximum values of r over all
tests is 0.89 and 1.24, respectively (so at best P-LINQ is 11% faster
and at worst 24% slower). All the translations succeeded, suggest-
ing that normalisation does not interfere with F# 3.0’s support for
additional query operators. These results demonstrate that the over-
head of normalisation is modest, even for small data sets, and oc-
casionally normalisation improves query time, even for concrete
queries.

At present, F# 3.0 does not allow overriding the default query
builder, so we cannot yet provide our implementation as a drop-in
replacement. We are discussing with the Microsoft F# team how
best to make our techniques available in a future version of F#.

10. Related Work
LINQ has attracted considerable commercial interest, but has not
been extensively documented in the research literature. Meijer et al.
(2006) and Meijer (2011) give overviews of the foundations of
LINQ. Syme (2006) presents an early version of F#’s quotation
and reflection capabilities, illustrated via applications to LINQ,
GPU code generation, and runtime F# code generation. Bierman
et al. (2007) present a formalisation of several extensions to C#,
including LINQ. Eini (2011) identifies obstacles to implementing
LINQ providers for non-SQL databases. Beckman (2012) advo-
cates LINQ as an interface to cloud computing platforms. Petricek
and Syme (2012) and Syme et al. (2012) describe F# 3.0’s sequence
expressions and the related computation builder mechanism. Use of
LINQ for abstraction over values and predicates and dynamic gen-
eration of queries has been discussed in blogs and online forums,
such as Petricek (2007b,a), but has not, to our knowledge, previ-
ously been modelled formally.

Type-safe quotation and meta-programming is an active re-
search area. Davies and Pfenning (2001) introduce a calculus λ�

for closed multistage programming based on a modal logic, where
each stage uses the same language. T-LINQ can be viewed as a vari-
ant with just two stages, each using a slightly different language.
Rhiger (2012) presents a calculus for multistage programming with
open quotations, noting that closed quotation leads to less efficient
code due to administrative redexes. In our setting, such adminis-
trative redexes have negligible cost because we normalisation time
is dominated by query execution time. Choi et al. (2011) present a
translation from open to closed quotation similar to ours, aimed at
supporting translation-based static analysis for staged computation.
Van den Bussche et al. (2005) present a meta-querying system for
SQL, but does not consider type safety or language integration.

Integrating queries into a general-purpose language is also an
active research area. Ohori and Ueno (2011) introduces SML#,
which offers direct support for SQL queries, including a type sys-
tem that guarantees each query accesses only a single database.
It does not normalise queries. Chlipala (2010) introduces Ur/Web,
which uses open quotations with a sophisticated type system. It also
does not normalise queries. Ur/Web can express most of the queries
given here, though it relies on subqueries to express query compo-
sition, and it cannot express the nested query (9) of Section 3.2
(Adam Chlipala, personal communication, January 2013). Budiu
et al. (2013) present a general framework for composing compilers
based on LCF-style tactics, and apply this methodology to a sub-
set of LINQ in C# called µLINQ. It would be interesting to see
whether this approach can be used for T-LINQ.

Grust et al. (2009, 2010) describe Ferry, a functional query
language that, like our work, supports higher-order functions and
nested data, but goes beyond our work in also supporting queries
that return nested results. The Ferry team have implemented sev-

eral LINQ query providers, as well as interfacing Ferry with
Links (Ulrich 2011) and Haskell (Giorgidze et al. 2010). Hen-
glein and Larsen (2010) consider efficient in-memory evaluation of
query-like constructs using lazy evaluation and generic discrimina-
tion. These approaches employ complementary techniques to our
normalisation-based approach; combining our results with these
systems appears possible, and should be explored in future work.

In our case the host language and quoted language are taken to
be identical, but that is a design choice. An approach where host
and quoted languages differ is described by Mainland (2012).

We indicate quotations syntactically (with <@ · · · @>). An al-
ternative approach is to indicate quotation by type declaration, as is
done in C# and with Lightweight Modular Staging in Scala (Rompf
and Odersky 2012). Another alternative is not to support quotation
in the language, but to use an embedded DSL to construct parse
trees, an approach taken in Nikola (Mainland and Morrisett 2010)
and Feldspar (Axelsson et al. 2010; Axelsson and Svenningsson
2012). We intend to team with Feldspar researchers to compare
their approach with ours.

11. Conclusion
We presented a simple theory of language-integrated query based
on quotation and normalisation. Through a series of examples,
we demonstrated that our technique supports abstraction over val-
ues and predicates, composition of queries, dynamic generation of
queries, and queries with nested intermediate data; and that higher-
order features proved useful even for dynamic generation of first-
order queries. We developed a formal theory, T-LINQ, and proved
that normalisation always succeeds in translating any query of flat
relation type to SQL. We presented an implementation in F# called
P-LINQ, and experimental results confirming our technique works
in practice as predicted. We observed that for several of our exam-
ples, Microsoft’s LINQ framework either fails to produce an SQL
query or produces an avalanche of SQL queries.

In essence, we have supplied a recipe for using a host language
to generate code in a target language. The recipe involves three
languages: the host language (in our case, F#), the target language
(in our case, SQL), and a quoted language (in our case, essentially
F# again).

• The host language should support quotation and anti-quotation
of terms in the quoted language: in our case, we use F# quota-
tion.

• The quoted language may need to add constructs not in the
host language (so it is as expressive as the target language),
and omit some constructs in the host language (so it is not
more expressive than the target language after normalisation):
in our case, the quoted language adds the database construct
but omits recursion.

• The quoted language should at least support lambda abstraction
and typing: support for lambda abstraction means it is sufficient
to support closed quotations, which in turn makes it easier to
support typing.

• Finally—and most importantly—one must identify an adequate
normalisation procedure. Normalisation should at least perform
beta-reduction: thus the quoted language may exploit the ex-
pressiveness of lambda abstraction even if the target language
is first order. Normalisation may perform operations other than
beta-reduction: in our case, additional rewrite rules support
translation into SQL.

Applying the recipe to other domains is an important area for future
work.

To conclude, let’s compare the theoretical and practical aspects
of our work. Regarding the host and quoted languages, the recipe



above makes clear they may differ in theory, and this is the case in
T-LINQ; in practice, they tend to be the same, and this is the case in
P-LINQ. Regarding coverage, T-LINQ differs from full LINQ, and
extending it to cover sorting, grouping, and aggregation remains
important work for tomorrow. Meanwhile, P-LINQ supports the
same features as LINQ, and it can be put to work today.

Our opening adage acknowledges that theory can fall short of
the needs of practice. In contrast, our experience confirms that prac-
tice benefits from a judicious dose of theory, even when that theory
is incomplete. We propose a reversal of the opening platitude.

What is the difference between theory and practice?
In theory there is a difference, but in practice there isn’t.
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