25 research outputs found

    Comparison of line-peak and line-scanning excitation in two-color laser-induced-fluorescence thermometry of OH

    Get PDF
    Two-line laser-induced-fluorescence (LIF) thermometry is commonly employed to generate instantaneous planar maps of temperature in unsteady flames. The use of line scanning to extract the ratio of integrated intensities is less common because it precludes instantaneous measurements. Recent advances in the energy output of high-speed, ultraviolet, optical parameter oscillators have made possible the rapid scanning of molecular rovibrational transitions and, hence, the potential to extract information on gas-phase temperatures. In the current study, two-line OH LIF thermometry is performed in a wellcalibrated reacting flow for the purpose of comparing the relative accuracy of various line-pair selections from the literature and quantifying the differences between peak-intensity and spectrally integrated line ratios. Investigated are the effects of collisional quenching, laser absorption, and the integration width for partial scanning of closely spaced lines on the measured temperatures. Data from excitation scans are compared with theoretical line shapes, and experimentally derived temperatures are compared with numerical predictions that were previously validated using coherent anti-Stokesā€“Raman scattering. Ratios of four pairs of transitions in the A2Ī£+ā†X2Ī  (1,0) band of OH are collected in an atmospheric-pressure, near-adiabatic hydrogen-air flame over a wide range of equivalence ratiosā€”from 0.4 to 1.4. It is observed that measured temperatures based on the ratio of Q1(14)/Q1(5) transition lines result in the best accuracy and that line scanning improves the measurement accuracy by as much as threefold at lowequivalence- ratio, low-temperature conditions. These results provide a comprehensive analysis of the procedures required to ensure accurate two-line LIF measurements in reacting flows over a wide range of conditions

    DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

    Get PDF
    This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described

    Ozone and PM(2.5) Exposure and Acute Pulmonary Health Effects: A Study of Hikers in the Great Smoky Mountains National Park

    Get PDF
    To address the lack of research on the pulmonary health effects of ozone and fine particulate matter (ā‰¤ 2.5 Ī¼m in aerodynamic diameter; PM(2.5)) on individuals who recreate in the Great Smoky Mountains National Park (USA) and to replicate a study performed at Mt. Washington, New Hampshire (USA), we conducted an observational study of adult (18ā€“82 years of age) day hikers of the Charlies Bunion trail during 71 days of fall 2002 and summer 2003. Volunteer hikers performed pre- and posthike pulmonary function tests (spirometry), and we continuously monitored ambient O(3), PM(2.5), temperature, and relative humidity at the trailhead. Of the 817 hikers who participated, 354 (43%) met inclusion criteria (nonsmokers and no use of bronchodilators within 48 hr) and gave acceptable and reproducible spirometry. For these 354 hikers, we calculated the posthike percentage change in forced vital capacity (FVC), forced expiratory volume in 1 sec (FEV(1)), FVC/FEV(1), peak expiratory flow, and mean flow rate between 25 and 75% of the FVC and regressed each separately against pollutant (O(3) or PM(2.5)) concentration, adjusting for age, sex, hours hiked, smoking status (former vs. never), history of asthma or wheeze symptoms, hike load, reaching the summit, and mean daily temperature. O(3) and PM(2.5) concentrations measured during the study were below the current federal standards, and we found no significant associations of acute changes in pulmonary function with either pollutant. These findings are contrasted with those in the Mt. Washington study to examine the hypothesis that pulmonary health effects are associated with exposure to O(3) and PM(2.5) in healthy adults engaged in moderate exercise

    Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP) markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (<it>Triticum aestivum</it>, genomes AABBDD) and wild tetraploid wheat (<it>Triticum turgidum </it>ssp. <it>dicoccoides</it>, genomes AABB) from the putative site of wheat domestication in Turkey. Data are used to assess the distribution of diversity among and within wheat genomes and to develop a panel of SNP markers for polyploid wheat.</p> <p>Results</p> <p>Nucleotide diversity was estimated in 2114 wheat genes and was similar between the A and B genomes and reduced in the D genome. Within a genome, diversity was diminished on some chromosomes. Low diversity was always accompanied by an excess of rare alleles. A total of 5,471 SNPs was discovered in 1791 wheat genes. Totals of 1,271, 1,218, and 2,203 SNPs were discovered in 488, 463, and 641 genes of wheat putative diploid ancestors, <it>T. urartu</it>, <it>Aegilops speltoides</it>, and <it>Ae. tauschii</it>, respectively. A public database containing genome-specific primers, SNPs, and other information was constructed. A total of 987 genes with nucleotide diversity estimated in one or more of the wheat genomes was placed on an <it>Ae. tauschii </it>genetic map, and the map was superimposed on wheat deletion-bin maps. The agreement between the maps was assessed.</p> <p>Conclusions</p> <p>In a young polyploid, exemplified by <it>T. aestivum</it>, ancestral species are the primary source of genetic diversity. Low effective recombination due to self-pollination and a genetic mechanism precluding homoeologous chromosome pairing during polyploid meiosis can lead to the loss of diversity from large chromosomal regions. The net effect of these factors in <it>T. aestivum </it>is large variation in diversity among genomes and chromosomes, which impacts the development of SNP markers and their practical utility. Accumulation of new mutations in older polyploid species, such as wild emmer, results in increased diversity and its more uniform distribution across the genome.</p

    EcoliWiki: a wiki-based community resource for Escherichia coli

    Get PDF
    EcoliWiki is the community annotation component of the PortEco (http://porteco.org; formerly EcoliHub) project, an online data resource that integrates information on laboratory strains of Escherichia coli, its phages, plasmids and mobile genetic elements. As one of the early adopters of the wiki approach to model organism databases, EcoliWiki was designed to not only facilitate community-driven sharing of biological knowledge about E. coli as a model organism, but also to be interoperable with other data resources. EcoliWiki content currently covers genes from five laboratory E. coli strains, 21 bacteriophage genomes, F plasmid and eight transposons. EcoliWiki integrates the Mediawiki wiki platform with other open-source software tools and in-house software development to extend how wikis can be used for model organism databases. EcoliWiki can be accessed online at http://ecoliwiki.net

    Gene Ontology annotations and resources.

    Get PDF
    The Gene Ontology (GO) Consortium (GOC, http://www.geneontology.org) is a community-based bioinformatics resource that classifies gene product function through the use of structured, controlled vocabularies. Over the past year, the GOC has implemented several processes to increase the quantity, quality and specificity of GO annotations. First, the number of manual, literature-based annotations has grown at an increasing rate. Second, as a result of a new 'phylogenetic annotation' process, manually reviewed, homology-based annotations are becoming available for a broad range of species. Third, the quality of GO annotations has been improved through a streamlined process for, and automated quality checks of, GO annotations deposited by different annotation groups. Fourth, the consistency and correctness of the ontology itself has increased by using automated reasoning tools. Finally, the GO has been expanded not only to cover new areas of biology through focused interaction with experts, but also to capture greater specificity in all areas of the ontology using tools for adding new combinatorial terms. The GOC works closely with other ontology developers to support integrated use of terminologies. The GOC supports its user community through the use of e-mail lists, social media and web-based resources

    The Gene Ontology: enhancements for 2011

    Get PDF
    The Gene Ontology (GO) (http://www.geneontology.org) is a community bioinformatics resource that represents gene product function through the use of structured, controlled vocabularies. The number of GO annotations of gene products has increased due to curation efforts among GO Consortium (GOC) groups, including focused literature-based annotation and ortholog-based functional inference. The GO ontologies continue to expand and improve as a result of targeted ontology development, including the introduction of computable logical definitions and development of new tools for the streamlined addition of terms to the ontology. The GOC continues to support its user community through the use of e-mail lists, social media and web-based resources

    Comparison of Line-peak and Line-scanning Excitation in Two-color Laser-induced-fluorescence Thermometry of OH

    No full text
    Two-line laser-induced-fluorescence (LIF) thermometry is commonly employed to generate instantaneous planar maps of temperature in unsteady flames. The use of line scanning to extract the ratio of integrated intensities is less common because it precludes instantaneous measurements. Recent advances in the energy output of high-speed, ultraviolet, optical parameter oscillators have made possible the rapid scanning of molecular rovibrational transitions and, hence, the potential to extract information on gas-phase temperatures. In the current study, two-line OH LIF thermometry is performed in a well-calibrated reacting flow for the purpose of comparing the relative accuracy of various line-pair selections from the literature and quantifying the differences between peak-intensity and spectrally integrated line ratios. Investigated are the effects of collisional quenching, laser absorption, and the integration width for partial scanning of closely spaced lines on the measured temperatures. Data from excitation scans are compared with theoretical line shapes, and experimentally derived temperatures are compared with numerical predictions that were previously validated using coherent anti-Stokesā€“Raman scattering. Ratios of four pairs of transitions in A2Ī£+ā†X2Ī  (1,0) band of OH are collected in an atmospheric-pressure, near-adiabatic hydrogen-air flame over a wide range of equivalence ratiosā€”from 0.4 to 1.4. It is observed that measured temperatures based on the ratio of Q1(14)/Q1(5) transition lines result in the best accuracy and that line scanning improves the measurement accuracy by as much as threefold at low-equivalence-ratio, low-temperature conditions. These results provide a comprehensive analysis of the procedures required to ensure accurate two-line LIF measurements in reacting flows over a wide range of conditions. Abstract Ā© 2009 Optical Society of Americ
    corecore