233 research outputs found

    Estimating total horizontal aeolian flux within shrub-invaded groundwater-dependent meadows using empirical and mechanistic models

    Get PDF
    Wind erosion is a significant environmental problem that removes soil resources from sensitive ecosystems and contributes to air pollution. In regions of shallow groundwater, friable (puffy) soils are maintained through capillary action, surface evaporation of solute-rich soil moisture, and protection from mobilization by groundwater-dependent grasses and shrubs. When a reduction in vegetation cover occurs through any disturbance process, there is potential for aeolian transport and dust emission. We find that as mean gap size between vegetation elements scaled by vegetation height increases, total horizontal aeolian sediment flux increases and explains 58% of the variation in total horizontal aeolian sediment flux. We also test a probabilistic model of wind erosion based on gap size between vegetation elements scaled by vegetation height (the Okin model), which predicts measured total horizontal aeolian sediment flux more closely than another commonly used model based on the average plant area observed in profile (Raupach model). The threshold shear velocity of bare soil appears to increase as gap size between vegetation elements scaled by vegetation height increases, reflecting either surface armoring or reduced interaction between the groundwater capillary zone and surface sediments. This work advances understanding of the importance of measuring gap size between vegetation elements scaled by vegetation height for empirically estimating Q and for structuring process-based models of desert wind erosion in groundwater-dependent vegetation

    Normothermia is protective during infrarenal aortic surgery

    Get PDF
    AbstractPurpose: Mild hypothermia has been suggested to be protective against tissue ischemia during aortic operations. However, recent studies have documented detrimental cardiac effects of hypothermia during a variety of operative procedures. The influence of different warming methods and the impact of hypothermia during standard aortic procedures was assessed. Methods: One hundred patients who underwent repair of infrarenal aortic aneurysms or aortoiliac occlusive disease were prospectively randomized into 2 groups, receiving either a circulating water mattress or a forced air warming blanket. Adjuvant warming methods were standardized. The day before surgery, 48-hour Holter monitors were applied and interpreted by a cardiologist blinded to the treatment. Randomization resulted in equivalent groups with regard to patient history, indications for surgery, body mass index, length of surgery, and fluid requirements. Results: Core temperatures were significantly warmer during surgery (36.3°C ± 0.7°C vs 35.4 ± 0.8°C) and after surgery (36.4°C ± 0.7°C vs 35.6°C ± 0.9°C) in patients with forced air warming (P < .001). The circulating water mattress group had significantly more metabolic acidosis perioperatively (P = .03). Postoperative length of stay, cardiac complications, and death rates were not significantly different. Subgroup analysis of 83 aneurysm patients comparing normothermia with hypothermia (temperature less than 36°C) on arrival to the recovery room identified decreased cardiac output (P = .02), thrombocytopenia (P = .02), elevated prothrombin time (P = .04), and inferior Acute Physiology and Chronic Health Evaluation (APACHE) II scores (P < .001) in the hypothermic group. Holter analysis revealed more sinus tachycardia (ST) segment changes and ventricular tachycardia in hypothermic aneurysm patients (P = .05). Conclusion: Patients treated with forced air blankets had significantly less metabolic acidosis and were kept significantly warmer than those treated with circulating water mattresses. Patients with aneurysms that were kept normothermic had a significantly improved clinical profile, with fewer cardiac events on the Holter recordings. We therefore conclude that (1) normothermia is protective for infrarenal aortic surgical patients; and (2) forced air warming blankets provide improved temperature maintenance compared with circulating water mattresses. (J Vasc Surg 1998;28:984-94.

    Predicting Greater Prairie-Chicken Lek Site Suitability to Inform Conservation Actions

    Get PDF
    The demands of a growing human population dictates that expansion of energy infrastructure, roads, and other development frequently takes place in native rangelands. Particularly, transmission lines and roads commonly divide rural landscapes and increase fragmentation. This has direct and indirect consequences on native wildlife that can be mitigated through thoughtful planning and proactive approaches to identifying areas of high conservation priority. We used nine years (2003–2011) of Greater Prairie-Chicken (Tympanuchus cupido) lek locations totaling 870 unique leks sites in Kansas and seven geographic information system (GIS) layers describing land cover, topography, and anthropogenic structures to model habitat suitability across the state. The models obtained had low omission rates (\u3c0.18) and high area under the curve scores (AUC \u3e0.81), indicating high model performance and reliability of predicted habitat suitability for Greater Prairie-Chickens. We found that elevation was the most influential in predicting lek locations, contributing three times more predictive power than any other variable. However, models were improved by the addition of land cover and anthropogenic features (transmission lines, roads, and oil and gas structures). Overall, our analysis provides a hierarchal understanding of Greater Prairie-Chicken habitat suitability that is broadly based on geomorphological features followed by land cover suitability. We found that when land features and vegetation cover are suitable for Greater Prairie-Chickens, fragmentation by anthropogenic sources such as roadways and transmission lines are a concern. Therefore, it is our recommendation that future human development in Kansas avoid areas that our models identified as highly suitable for Greater Prairie-Chickens and focus development on land cover types that are of lower conservation concern

    Simvastatin suppresses experimental aortic aneurysm expansion

    Get PDF
    ObjectiveAbdominal aortic aneurysm (AAA) formation is a result of inflammation and extracellular matrix (ECM) remodeling mediated by matrix metalloproteinases (MMPs). Hydroxymethylglutaryl-coenzyme A inhibitors (statins), although clinically used as lipid-lowering agents, have also been demonstrated to have anti-inflammatory effects. This study was designed to determine whether the hydroxymethylglutaryl-coenzyme A inhibitor simvastatin suppresses aneurysm formation in an elastase-induced rat AAA model.MethodsAneurysms were created in adult male Wistar rats by infusion of elastase into isolated infrarenal aortic segments. The rats were randomized to receive either simvastatin (n = 17) or placebo (n = 17) by gastric lavage daily starting the day before surgery. The rats were euthanized and the infrarenal aortas harvested on postoperative day 7. Aortic diameters were measured before infusion, immediately after infusion, and at the time of harvesting. Protein expression was measured by immunoblot analysis. Gene expression profiling using Affymetrix U34A rat genome chips was performed to identify changes in gene expression caused by simvastatin treatment.ResultsMean aneurysm diameter was significantly less in the simvastatin treatment group compared with controls (3.4 ± 0.08 mm vs 4.3 ± 0.19 mm; P = .0001). MMP-9 and nuclear factor-κB protein levels were decreased in the aortas of simvastatin-treated animals. Gene microarray analysis revealed 315 genes with statistically significant changes in expression (P < .05) in the simvastatin group. Genes related to inflammation, ECM remodeling, and oxidative stress function were downregulated. These included genes for interleukin 1, interleukin 4, inducible nitric oxide synthase, P-selectin, platelet-derived growth factor α, tumor necrosis factor, and several chemokines.ConclusionsSimvastatin significantly suppresses experimental aneurysm expansion and reduces protein levels of MMP-9 and nuclear factor-κB. Gene array analysis provides evidence that several mediators of inflammation, matrix remodeling, and oxidative stress are downregulated by simvastatin treatment. This suggests that simvastatin inhibits AAA formation by blocking the expression of certain proinflammatory genes. Simvastatin may be useful as an adjuvant therapy to suppress the growth of small aneurysms.Clinical RelevanceHuman aortic aneurysms are characterized histologically by an inflammatory infiltrate with severe proteolytic destruction. Statins, although used clinically as lipid-lowering agents, have been shown to have anti-inflammatory effects. Simvastatin reduced experimental aneurysm size in this study. It seems that this reduction is mediated by interfering with multiple pathways, including oxidative stress, inflammation, and ECM and matrix remodeling. Further study into the effect of statins in reducing the growth of AAAs in patients is warranted

    Inhibition of inducible nitric oxide synthase limits nitric oxide production and experimental aneurysm expansion

    Get PDF
    AbstractPurpose: Nitric oxide (NO), frequently cited for its protective role, can also generate toxic metabolites known to degrade elastin. Both abdominal aortic aneurysms (AAAs) and inducible nitric oxide synthase (iNOS) are associated with inflammatory states, yet the relationship between NO production by iNOS and AAA development is unknown. The current study examines iNOS expression, NO production, and the effects of selective inhibition of iNOS by aminoguanidine in experimental AAA. Methods: An intra-aortic elastase infusion model was used. Control rats received intra-aortic saline infusion and postoperative intraperitoneal saline injections (Group 1). In the remaining groups, intra-aortic elastase infusion was used to induce aneurysm formation. These rats were treated with intraperitoneal injections of saline postoperatively (Group 2), aminoguanidine postoperatively (Group 3), or aminoguanidine preoperatively and postoperatively (Group 4). Aortic diameter and plasma nitrite/nitrate levels were measured on the day of surgery and postoperative day 7. Aortas were harvested for biochemical and histologic analysis on postoperative day 7. Results: Infusion of elastase produced AAAs (P <.001) with significant production of iNOS (P <.05) and nitrite/nitrate (P <.003) compared with controls. Selective inhibition of iNOS with aminoguanidine in elastase-infused aortas significantly reduced aneurysm size (P <.01) compared with elastase infusion alone. Aminoguanidine-treated rats displayed suppression of iNOS expression and plasma nitrite/nitrate production not significantly different from the control group. Histologic evaluation revealed equivalent inflammatory infiltrates in elastase-infused groups. Conclusion: Expression of iNOS is induced and plasma nitrite/nitrate levels are increased in experimental AAA. Inhibition of iNOS limits NO production and iNOS expression, resulting in smaller aneurysm size. NO production by iNOS plays an important role with detrimental effects during experimental aneurysm development. (J Vasc Surg 2001;33:579-86.

    MicroRNA expression signature in human abdominal aortic aneurysms

    Get PDF
    Background: Abdominal aortic aneurysm (AAA) is a dilatation of the aorta affecting most frequently elderly men. Histologically AAAs are characterized by inflammation, vascular smooth muscle cell apoptosis, and extracellular matrix degradation. The mechanisms of AAA formation, progression, and rupture are currently poorly understood. A previous mRNA expression study revealed a large number of differentially expressed genes between AAA and non-aneurysmal control aortas. MicroRNAs (miRNAs), small non-coding RNAs that are post-transcriptional regulators of gene expression, could provide a mechanism for the differential expression of genes in AAA. Methods: To determine differences in miRNA levels between AAA (n = 5) and control (n = 5) infrarenal aortic tissues, a microarray study was carried out. Results were adjusted using Benjamini-Hochberg correction (adjusted p\u3c 0.05). Real-time quantitative RT-PCR (qRT-PCR) assays with an independent set of 36 AAA and seven control tissues were used for validation. Potential gene targets were retrieved from miRNA target prediction databases Pictar, TargetScan, and MiRTarget2. Networks from the target gene set were generated and examined using the network analysis programs, CytoScape® and Ingenuity Pathway Core Analysis®. Results: A microarray study identified eight miRNAs with significantly different expression levels between AAA and controls (adjusted p \u3c 0.05). Real-time qRT-PCR assays validated the findings for five of the eight miRNAs. A total of 222 predicted miRNA target genes known to be differentially expressed in AAA based on a prior mRNA microarray study were identified. Bioinformatic analyses revealed that several target genes are involved in apoptosis and activation of T cells. Conclusions: Our genome-wide approach revealed several differentially expressed miRNAs in human AAA tissue suggesting that miRNAs play a role in AAA pathogenesis. Keywords: Apoptosis, Microarray analysis, Vascular biology, miRNA-mRNA analysis, Network analysi

    Temporal variability in aboveground plant biomass decreases as spatial variability increases

    Get PDF
    Ecological theory predicts that diversity decreases variability in ecosystem function. We predict that, at the landscape scale, spatial variability created by a mosaic of contrasting patches that differ in time since disturbance will decrease temporal variability in aboveground plant biomass. Using data from a multi-year study of seven grazed tallgrass prairie landscapes, each experimentally managed for one to eight patches, we show that increased spatial variability driven by spatially patchy fire and herbivory reduces temporal variability in aboveground plant biomass. This pattern is associated with statistical evidence for the portfolio effect and a positive relationship between temporal variability and functional group synchrony as predicted by metacommunity variability theory. As disturbance from fire and grazing interact to create a shifting mosaic of spatially heterogeneous patches within a landscape, temporal variability in aboveground plant biomass can be dampened. These results suggest that spatially heterogeneous disturbance regimes contribute to a portfolio of ecosystem functions provided by biodiversity, including wildlife habitat, fuel, and forage. We discuss how spatial patterns of disturbance drive variability within and among patches.Peer reviewedNatural Resource Ecology and Managemen

    Cytochrome P450 Inhibitors Reduce Creeping Bentgrass (Agrostis stolonifera) Tolerance to Topramezone

    Get PDF
    Creeping bentgrass (Agrostis stolonifera L.) is moderately tolerant to the p-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide topramezone. However, the contribution of plant metabolism of topramezone to this tolerance is unknown. Experiments were conducted to determine if known cytochrome P450 monooxygenase inhibitors 1-aminobenzotriazole (ABT) and malathion alone or in combination with the herbicide safener cloquintocet-mexyl influence creeping bentgrass tolerance to topramezone. Creeping bentgrass in hydroponic culture was treated with ABT (70 μM), malathion (70 μm and 1000 g ha(-1)), or cloquintocet-mexyl (70 μM and 1000 g ha(-1)) prior to topramezone (8 g ha(-1)) application. Topramezone-induced injury to creeping bentgrass increased from 22% when applied alone to 79 and 41% when applied with malathion or ABT, respectively. Cloquintocet-mexyl (70 μM and 1000 g ha(-1)) reduced topramezone injury to 1% and increased creeping bentgrass biomass and PSII quantum yield. Cloquintocet-mexyl mitigated the synergistic effects of ABT more than those of malathion. The effects of malathion on topramezone injury were supported by creeping bentgrass biomass responses. Responses to ABT and malathion suggest that creeping bentgrass tolerance to topramezone is influenced by cytochrome P450-catalyzed metabolism. Future research should elucidate primary topramezone metabolites and determine the contribution of cytochrome P450 monooxygenases and glutathione S-transferases to metabolite formation in safened and non-safened creeping bentgrass

    Regional expression of HOXA4 along the aorta and its potential role in human abdominal aortic aneurysms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The infrarenal abdominal aorta exhibits increased disease susceptibility relative to other aortic regions. Allograft studies exchanging thoracic and abdominal segments showed that regional susceptibility is maintained regardless of location, suggesting substantial roles for embryological origin, tissue composition and site-specific gene expression.</p> <p>Results</p> <p>We analyzed gene expression with microarrays in baboon aortas, and found that members of the HOX gene family exhibited spatial expression differences. <it>HOXA4 </it>was chosen for further study, since it had decreased expression in the abdominal compared to the thoracic aorta. Western blot analysis from 24 human aortas demonstrated significantly higher HOXA4 protein levels in thoracic compared to abdominal tissues (<it>P </it>< 0.001). Immunohistochemical staining for HOXA4 showed nuclear and perinuclear staining in endothelial and smooth muscle cells in aorta. The <it>HOXA4 </it>transcript levels were significantly decreased in human abdominal aortic aneurysms (AAAs) compared to age-matched non-aneurysmal controls (<it>P </it>< 0.00004). Cultured human aortic endothelial and smooth muscle cells stimulated with INF-γ (an important inflammatory cytokine in AAA pathogenesis) showed decreased levels of HOXA4 protein (<it>P </it>< 0.0007).</p> <p>Conclusions</p> <p>Our results demonstrated spatial variation in expression of HOXA4 in human aortas that persisted into adulthood and that downregulation of <it>HOXA4 </it>expression was associated with AAAs, an important aortic disease of the ageing population.</p

    Levels and equivalence in credit and qualifications frameworks: Contrasting the prescribed and enacted curriculum in school and college

    Get PDF
    Drawing on data from an empirical study of three matched subjects in upper secondary school and further education college in Scotland, this article explores some of the factors that result in differences emerging from the translation of the prescribed curriculum into the enacted curriculum. We argue that these differences raise important questions about equivalences which are being promoted through the development of credit and qualifications frameworks. The article suggests that the standardisation associated with the development of a rational credit and qualifications framework and an outcomes-based prescribed curriculum cannot be achieved precisely because of the multiplicity that emerges from the practices of translation
    corecore