30 research outputs found

    Nonengraftment Haploidentical Cellular Therapy for Hematologic Malignancies

    Get PDF
    Much of the therapeutic benefit of allogeneic transplant is by a graft versus tumor effect. Further data shows that transplant engraftment is not dependant on myeloablation, instead relying on quantitative competition between donor and host cells. In the clinical setting, engraftment by competition alone is not feasible due to the need for large numbers of infused cells. Instead, low-level host irradiation has proven to be an effective engraftment strategy that is stem cell toxic but not myeloablative. The above observations served as the foundation for clinical trials utilizing allogeneic matched and haploidentical peripheral blood stem cell infusions with minimal conditioning in patients with refractory malignancies. Although engraftment was transient or not apparent, there were compelling responses in a heavily pretreated patient population that appear to result from the breaking of tumor immune tolerance by the host through the actions of IFNγ, invariant NK T cells, CD8 T cells, NK cells, or antigen presenting cells

    Left sided inferior vena cava duplication and venous thromboembolism: case report and review of literature

    Get PDF
    The etiology of venous thromboembolism in young patients is frequently associated with hereditary coagulation abnormalities, immunologic diseases, and neoplasia. The advent of radiological advances, namely Computed Tomography (CT) scans and venography has identified vena cava malformations as a new etiologic factor worthy of consideration. In this case report, we describe the unusual occurrence of venous thromboembolism in association with a duplicated inferior vena cava. Duplications of the inferior vena cava (IVC) are seen with an incidence of 0.2% to 3.0% in the general population. Embryogenesis of the IVC is a complex process involving the intricate formation and regression of numerous anastomoses, potentially leading to various anomalies. We present a 23-year-old Caucasian woman with IVC duplication who developed a deep venous thrombosis and multiple pulmonary emboli. Anomaly of the IVC is a rare example of a congenital condition that predisposes to thromboembolism, presumably by favoring venous stasis. This diagnosis should be considered in patients under the age of 30 with spontaneous occurrence of blood clots

    GB virus-C – a virus without a disease: We cannot give it chronic fatigue syndrome

    Get PDF
    BACKGROUND: Chronic fatigue syndrome (CFS) is an illness in search of an infectious etiology. GB virus-C (GBV-C) virus is a flavivirus with cell tropism and host defense induction qualities compatible with a role in producing the syndrome. The GBV-C genome is detectable in 4% of the population and 12% of the population is seropositive. The present study evaluated the association between infection with GBV and CFS. METHODS: We used a commercial EIA to detect antibodies against the GBV-C E2 protein and a quantitative real-time RT-PCR assay to detect active GBV-C infection. Sera were from a case control study of CFS in Atlanta, Georgia. The Fisher's exact two-tailed test was used for statistical analysis. RESULTS: Two of 12 CFS patients and one of 21 controls were seropositive for prior GBV-C infection and one control had viral RNA detected, indicating active infection. The results are not statistically different. CONCLUSION: We found no evidence that active or past infection with GBV is associated with CFS

    Nuclear Factor 90(NF90) targeted to TAR RNA inhibits transcriptional activation of HIV-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Examination of host cell-based inhibitors of HIV-1 transcription may be important for attenuating viral replication. We describe properties of a cellular double-stranded RNA binding protein with intrinsic affinity for HIV-1 TAR RNA that interferes with Tat/TAR interaction and inhibits viral gene expression.</p> <p>Results</p> <p>Utilizing TAR affinity fractionation, North-Western blotting, and mobility-shift assays, we show that the C-terminal variant of nuclear factor 90 (NF90ctv) with strong affinity for the TAR RNA, competes with Tat/TAR interaction <it>in vitro</it>. Analysis of the effect of NF90ctv-TAR RNA interaction <it>in vivo </it>showed significant inhibition of Tat-transactivation of HIV-1 LTR in cells expressing NF90ctv, as well as changes in histone H3 lysine-4 and lysine-9 methylation of HIV chromatin that are consistent with the epigenetic changes in transcriptionally repressed gene.</p> <p>Conclusion</p> <p>Structural integrity of the TAR element is crucial in HIV-1 gene expression. Our results show that perturbation Tat/TAR RNA interaction by the dsRNA binding protein is sufficient to inhibit transcriptional activation of HIV-1.</p

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.

    Get PDF
    The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)

    Heterozygous Hemoglobin Sherwood Forest Causing Polycythemia

    No full text
    Hemoglobin (Hb) Sherwood Forest is a rare high-affinity hemoglobin first described in 1977, arising from an Arg to Thr substitution at codon 104 of the beta chain. This hemoglobin variant has been identified in few individuals and has been associated with a compensatory erythrocytosis in the homozygous state. Prior scarce case reports have noted that heterozygotes for this variant are phenotypically normal. Here we present a patient who was evaluated in our hematology clinic for chronic erythrocytosis and was found to be heterozygous for Hb Sherwood Forest. No other primary or secondary cause of his polycythemia was identified. This is the first described case of heterozygous Hemoglobin Sherwood Forest causing erythrocytosis
    corecore