63 research outputs found

    A Single Intradermal Injection of IFN-γ Induces an Inflammatory State in Both Non-Lesional Psoriatic and Healthy Skin

    Get PDF
    Psoriasis is a chronic, debilitating, immune-mediated inflammatory skin disease. As IFN-γ is involved in many cellular processes, including activation of dendritic cells (DCs), antigen processing and presentation, cell adhesion and trafficking, and cytokine and chemokine production, IFN-γ–producing Th1 cells were proposed to be integral to the pathogenesis of psoriasis. Recently, IFN-γ was shown to enhance IL-23 and IL-1 production by DCs and subsequently induce Th17 cells, which are important contributors to the inflammatory cascade in psoriatic lesions. To determine whether IFN-γ indeed induces the pathways expressed in psoriatic lesions, a single intradermal injection of IFN-γ was administered to an area of clinically normal, non-lesional (NL) skin of psoriasis patients and biopsies were collected 24 hours later. Although there were no visible changes in the skin, IFN-γ induced many molecular and histological features characteristic of psoriatic lesions. IFN-γ increased a number of differentially expressed genes in the skin, including many chemokines concomitant with an influx of T cells and inflammatory DCs. Furthermore, inflammatory DC products tumor necrosis factor (TNF), inducible nitric oxide synthase, IL-23, and TNF-related apoptosis-inducing ligand were present in IFN-γ–treated skin. Thus, IFN-γ, which is significantly elevated in NL skin compared with healthy skin, appears to be a key pathogenic cytokine that can induce many features of the inflammatory cascade of psoriasis

    Post-Therapeutic Relapse of Psoriasis after CD11a Blockade Is Associated with T Cells and Inflammatory Myeloid DCs

    Get PDF
    To understand the development of new psoriasis lesions, we studied a group of moderate-to-severe psoriasis patients who experienced a relapse after ceasing efalizumab (anti-CD11a, Raptiva, Genentech). There were increased CD3+ T cells, neutrophils, CD11c+ and CD83+ myeloid dendritic cells (DCs), but no increase in CD1c+ resident myeloid DCs. In relapsed lesions, there were many CD11c+CD1c−, inflammatory myeloid DCs identified by TNFSF10/TRAIL, TNF, and iNOS. CD11c+ cells in relapsed lesions co-expressed CD14 and CD16 in situ. Efalizumab induced an improvement in many psoriasis genes, and during relapse, the majority of these genes reversed back to a lesional state. Gene Set Enrichment Analysis (GSEA) of the transcriptome of relapsed tissue showed that many of the gene sets known to be present in psoriasis were also highly enriched in relapse. Hence, on ceasing efalizumab, T cells and myeloid cells rapidly enter the skin to cause classic psoriasis

    Road avoidance and its energetic consequences for reptiles

    Get PDF
    CITATION: Paterson, J. E., et al. 2019. Road avoidance and its energetic consequences for reptiles. Ecology and Evolution, 9(17):9794-9803, doi:10.1002/ece3.5515.The original publication is available at https://onlinelibrary.wiley.comRoads are one of the most widespread human-caused habitat modifications that can increase wildlife mortality rates and alter behavior. Roads can act as barriers with variable permeability to movement and can increase distances wildlife travel to access habitats. Movement is energetically costly, and avoidance of roads could therefore impact an animal's energy budget. We tested whether reptiles avoid roads or road crossings and explored whether the energetic consequences of road avoidance decreased individual fitness. Using telemetry data from Blanding's turtles (Emydoidea blandingii; 11,658 locations of 286 turtles from 15 sites) and eastern massasaugas (Sistrurus catenatus; 1,868 locations of 49 snakes from 3 sites), we compared frequency of observed road crossings and use of road-adjacent habitat by reptiles to expected frequencies based on simulated correlated random walks. Turtles and snakes did not avoid habitats near roads, but both species avoided road crossings. Compared with simulations, turtles made fewer crossings of paved roads with low speed limits and more crossings of paved roads with high speed limits. Snakes made fewer crossings of all road types than expected based on simulated paths. Turtles traveled longer daily distances when their home range contained roads, but the predicted energetic cost was negligible: substantially less than the cost of producing one egg. Snakes with roads in their home range did not travel further per day than snakes without roads in their home range. We found that turtles and snakes avoided crossing roads, but road avoidance is unlikely to impact fitness through energetic expenditures. Therefore, mortality from vehicle strikes remains the most significant impact of roads on reptile populations.https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.5515Publisher's versio

    Somatic embryogenesis and plant regeneration of mango (Mangifera indica L.)

    No full text
    corecore