4,683 research outputs found

    Matter in transition

    Get PDF
    We explore a novel type of transition in certain 6D and 4D quantum field theories, in which the matter content of the theory changes while the gauge group and other parts of the spectrum remain invariant. Such transitions can occur, for example, for SU(6) and SU(7) gauge groups, where matter fields in a three-index antisymmetric representation and the fundamental representation are exchanged in the transition for matter in the two-index antisymmetric representation. These matter transitions are realized by passing through superconformal theories at the transition point. We explore these transitions in dual F-theory and heterotic descriptions, where a number of novel features arise. For example, in the heterotic description the relevant 6D SU(7) theories are described by bundles on K3 surfaces where the geometry of the K3 is constrained in addition to the bundle structure. On the F-theory side, non-standard representations such as the three-index antisymmetric representation of SU(N) require Weierstrass models that cannot be realized from the standard SU(N) Tate form. We also briefly describe some other situations, with groups such as Sp(3), SO(12), and SU(3), where analogous matter transitions can occur between different representations. For SU(3), in particular, we find a matter transition between adjoint matter and matter in the symmetric representation, giving an explicit Weierstrass model for the F-theory description of the symmetric representation that complements another recent analogous construction.Comment: 107 pages, 3 figures, 32 tables. In version 2, one figure and comments added on the geometry of matter transition

    Land Grant Application- Lara, James (Turner)

    Get PDF
    Land grant application submitted to the Maine Land Office for James Lara for service in the Revolutionary War.https://digitalmaine.com/revolutionary_war_me_land_office/1548/thumbnail.jp

    Fibrations in CICY Threefolds

    Full text link
    In this work we systematically enumerate genus one fibrations in the class of 7,890 Calabi-Yau manifolds defined as complete intersections in products of projective spaces, the so-called CICY threefolds. This survey is independent of the description of the manifolds and improves upon past approaches that probed only a particular algebraic form of the threefolds (i.e. searches for "obvious" genus one fibrations as in [1,2]). We also study K3-fibrations and nested fibration structures. That is, K3 fibrations with potentially many distinct elliptic fibrations. To accomplish this survey a number of new geometric tools are developed including a determination of the full topology of all CICY threefolds, including triple intersection numbers. In 2,946 cases this involves finding a new "favorable" description of the manifold in which all divisors descend from a simple ambient space. Our results consist of a survey of obvious fibrations for all CICY threefolds and a complete classification of all genus one fibrations for 4,957 "Kahler favorable" CICYs whose Kahler cones descend from a simple ambient space. Within the CICY dataset, we find 139,597 obvious genus one fibrations, 30,974 obvious K3 fibrations and 208,987 nested combinations. For the Kahler favorable geometries we find a complete classification of 377,559 genus one fibrations. For one manifold with Hodge numbers (19,19) we find an explicit description of an infinite number of distinct genus-one fibrations extending previous results for this particular geometry that have appeared in the literature. The data associated to this scan is available at http://www1.phys.vt.edu/cicydata .Comment: 54 pages, 4 tables, 4 figure

    Exploring Positive Monad Bundles And A New Heterotic Standard Model

    Get PDF
    A complete analysis of all heterotic Calabi-Yau compactifications based on positive two-term monad bundles over favourable complete intersection Calabi-Yau threefolds is performed. We show that the original data set of about 7000 models contains 91 standard-like models which we describe in detail. A closer analysis of Wilson-line breaking for these models reveals that none of them gives rise to precisely the matter field content of the standard model. We conclude that the entire set of positive two-term monads on complete intersection Calabi-Yau manifolds is ruled out on phenomenological grounds. We also take a first step in analyzing the larger class of non-positive monads. In particular, we construct a supersymmetric heterotic standard model within this class. This model has the standard model gauge group and an additional U(1)_{B-L} symmetry, precisely three families of quarks and leptons, one pair of Higgs doublets and no anti-families or exotics of any kind.Comment: 48 page

    A Comprehensive Scan for Heterotic SU(5) GUT models

    Get PDF
    Compactifications of heterotic theories on smooth Calabi-Yau manifolds remains one of the most promising approaches to string phenomenology. In two previous papers, http://arXiv.org/abs/arXiv:1106.4804 and http://arXiv.org/abs/arXiv:1202.1757, large classes of such vacua were constructed, using sums of line bundles over complete intersection Calabi-Yau manifolds in products of projective spaces that admit smooth quotients by finite groups. A total of 10^12 different vector bundles were investigated which led to 202 SU(5) Grand Unified Theory (GUT) models. With the addition of Wilson lines, these in turn led, by a conservative counting, to 2122 heterotic standard models. In the present paper, we extend the scope of this programme and perform an exhaustive scan over the same class of models. A total of 10^40 vector bundles are analysed leading to 35,000 SU(5) GUT models. All of these compactifications have the right field content to induce low-energy models with the matter spectrum of the supersymmetric standard model, with no exotics of any kind. The detailed analysis of the resulting vast number of heterotic standard models is a substantial and ongoing task in computational algebraic geometry.Comment: 33 pages, Late

    Learning to become an expert : reinforcement learning and the acquisition of perceptual expertise

    Get PDF
    To elucidate the neural mechanisms underlying the development of perceptual expertise, we recorded ERPs while participants performed a categorization task. We found that as participants learned to discriminate computer-generated "blob'' stimuli, feedback modulated the amplitude of the errorrelated negativity (ERN)-an ERP component thought to reflect error evaluation within medial-frontal cortex. As participants improved at the categorization task, we also observed an increase in amplitude of an ERP component associated with object recognition (the N250). The increase in N250 amplitude preceded an increase in amplitude of an ERN component associated with internal error evaluation (the response ERN). Importantly, these electroencephalographic changes were not observed for participants who failed to improve on the categorization task. Our results suggest that the acquisition of perceptual expertise relies on interactions between the posterior perceptual system and the reinforcement learning system involving medial-frontal cortex

    Universal Demographic Data Collection Standardization for Better Decision-Making

    Get PDF
    Global health care providers, health care networks, health care institutions, market researchers, as well as other public and private entities, could greatly benefit from universal demographic data standardization. The authors analyze data from data collection systems found in The United States, Israel, and Europe. Each data collection system varies enough to prohibit information and knowledge exchanges. One use of data is to gain local insights to adapt to changing trends, however, in a global market varying data sets and interpretations could hinder accurate decision-makin

    Selecting RNA aptamers for synthetic biology: investigating magnesium dependence and predicting binding affinity.

    Get PDF
    The ability to generate RNA aptamers for synthetic biology using in vitro selection depends on the informational complexity (IC) needed to specify functional structures that bind target ligands with desired affinities in physiological concentrations of magnesium. We investigate how selection for high-affinity aptamers is constrained by chemical properties of the ligand and the need to bind in low magnesium. We select two sets of RNA aptamers that bind planar ligands with dissociation constants (K(d)s) ranging from 65 nM to 100 microM in physiological buffer conditions. Aptamers selected to bind the non-proteinogenic amino acid, p-amino phenylalanine (pAF), are larger and more informationally complex (i.e., rarer in a pool of random sequences) than aptamers selected to bind a larger fluorescent dye, tetramethylrhodamine (TMR). Interestingly, tighter binding aptamers show less dependence on magnesium than weaker-binding aptamers. Thus, selection for high-affinity binding may automatically lead to structures that are functional in physiological conditions (1-2.5 mM Mg(2+)). We hypothesize that selection for high-affinity binding in physiological conditions is primarily constrained by ligand characteristics such as molecular weight (MW) and the number of rotatable bonds. We suggest that it may be possible to estimate aptamer-ligand affinities and predict whether a particular aptamer-based design goal is achievable before performing the selection
    corecore