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Abstract: We explore a novel type of transition in certain 6D and 4D quantum field

theories, in which the matter content of the theory changes while the gauge group and

other parts of the spectrum remain invariant. Such transitions can occur, for example, for

SU(6) and SU(7) gauge groups, where matter fields in a three-index antisymmetric repre-

sentation and the fundamental representation are exchanged in the transition for matter

in the two-index antisymmetric representation. These matter transitions are realized by

passing through superconformal theories at the transition point. We explore these transi-

tions in dual F-theory and heterotic descriptions, where a number of novel features arise.

For example, in the heterotic description the relevant 6D SU(7) theories are described by

bundles on K3 surfaces where the geometry of the K3 is constrained in addition to the

bundle structure. On the F-theory side, non-standard representations such as the three-

index antisymmetric representation of SU(N) require Weierstrass models that cannot be

realized from the standard SU(N) Tate form. We also briefly describe some other situa-

tions, with groups such as Sp(3), SO(12), and SU(3), where analogous matter transitions

can occur between different representations. For SU(3), in particular, we find a matter

transition between adjoint matter and matter in the symmetric representation, giving an

explicit Weierstrass model for the F-theory description of the symmetric representation

that complements another recent analogous construction.
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1 Introduction

A variety of different types of transitions can occur in physical theories in which the massless

or light spectrum of the theory changes. For certain types of transitions, 6D supergravity

forms a clear framework in which to classify and analyze the possible changes of spectrum;

similar transitions occur in 4D supergravity theories, though the detailed description can

involve more subtle issues. For 6D theories coupled to gravity, the different types of tran-

sitions can be characterized by the massless spectrum of the low-energy theory.

The most dramatic of these transitions in 6D theories are the tensionless string or small

instanton transitions [1, 2], which involve a change in the number of tensor multiplets in

the theory, accompanied by a corresponding change in the number of uncharged scalar

hypermultiplets. These transitions are described in F-theory by blowing up or down points

on the base manifold used for the F-theory compactification, and in the heterotic theory by

shrinking an instanton to a point. In both pictures the resulting transition is fundamentally

nonperturbative in nature, and in the low-energy theory it involves passing through a

superconformal fixed point. Higgsing/unHiggsing transitions, on the other hand, leave

the number of tensor multiplets unchanged but modify the gauge group of the theory

and generally change the number of vector multiplets in addition to modifying the matter

spectrum. Higgsing/unHiggsing type transitions have a simple description in both F-theory

and heterotic pictures, in terms of a tuning of Weierstrass moduli on the one hand and

tuning of bundle moduli on the other, and have a perturbative description in the low-

energy theory.

In this paper we describe another type of transition, in which both the tensor and

vector multiplet spectra remain unchanged, and only the representation content of the

matter fields is modified. While the possibility of such transitions has been noted in the

literature [3–6] these kinds of pure matter transitions have not been studied in depth, and

we identify a number of new interesting transitions in this class here. We describe these

transitions both from the F-theory point of view and in a dual heterotic picture. Because

of the matter representations involved (frequently involving symmetry enhancement of the

singular fibers associated to exceptional groups, etc.) these transitions are not accessible

in a perturbative Type IIB description and can only be explored in F-theory. In the F-

theory geometry these transitions can be realized by tuning Weierstrass moduli so that

certain codimension two singularities coincide and then split into a distinct geometry. On

the heterotic side these transitions arise when an instanton is shrunk and moved into a

separate component of the bundle structure group in the same E8 component. In both

cases the transition can be described by moving along a one-parameter family of theories

that passes through a strongly coupled superconformal fixed point, but does not move onto

the tensor branch. In both the heterotic bundle and the resolved F-theory geometry these

transitions are realizable as geometric transitions (i.e. topology changing transitions). Our

description of these transitions in both F-theory and the heterotic theory is for the most

part quite general, but for comparison of these perspectives we focus in particular on cases

where the F-theory geometry is compactified on a K3 fibration over a base B and the

heterotic geometry describes an elliptic fibration over the same base B.

– 2 –



J
H
E
P
0
4
(
2
0
1
6
)
0
8
0

While we primarily focus on compactifications to 6D to make the analysis completely

concrete and precise, the transitions we study are local phenomena that will also arise

in field theory without the supergravity coupling; these transitions should also arise in a

similar fashion in 4D theories. Though some of the technical details and issues involved

will be more subtle in 4D due to the presence of a superpotential and additional complexity

in the theories with reduced supersymmetry, many aspects of the analysis carried out here,

including the general forms of F-theory Weierstrass models and heterotic bundles, will hold

in a large class of dual geometries for 4D compactifications. Only the details of the anomaly

analysis and some specific features of the heterotic constructions on specific geometries will

depend upon the dimensionality of the construction.

We begin in section 2 with a low-energy description of matter transitions in 6D theories

with SU(6), SU(7), and SU(8) gauge groups. The strong constraints of anomaly cancel-

lation dictate the transitions that can occur in matter content without a change in the

gauge group of the theory. In section 3 we describe these transitions in F-theory using

Weierstrass models, some of which do not have the standard Tate form for SU(N). In

section 4 we describe the transitions from the heterotic point of view, where the transitions

are manifested by instantons moving between factors in the structure group of a bundle

within one E8 factor. In section 5 we relate the F-theory and heterotic pictures using

the spectral cover construction of the heterotic gauge bundle and explore novel forms of

the stable degeneration limit of the F-theory compactification. In section 6 we briefly de-

scribe some examples of matter transitions in other groups, and section 7 contains some

concluding comments. A variety of useful technical results are provided in the appendices.

2 SU(N) matter transitions in 6D supergravity

2.1 Anomaly-equivalent matter representations

In 6D supergravity, anomaly cancellation conditions strongly constrain the spectrum of

massless matter fields that can be charged under a given gauge group. In some cases,

however, there are multiple distinct types of matter that give equivalent solutions to the

anomaly equations.

One of the simplest examples occurs for SU(6) and higher SU(N) gauge groups, with

charged matter that transforms under the three-index antisymmetric representation, as

described in [5, 6]. In 6D, the anomaly cancellation conditions for a matter spectrum

containing xR fields transforming in each representation R of an SU(N) gauge group are

([7, 8], as described in [9])

−a · b = −1

6

(
Aadj −

∑
R

xRAR

)
(2.1)

0 = Bi
adj −

∑
R

xRBR (2.2)

b · b = −1

3

(
Cadj −

∑
R

xRCR

)
(2.3)
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where a, b are the coefficients of BR2 and BF 2 Green-Schwarz terms, and are associated

with vectors in the signature (1, T ) anomaly lattice of the 6D supergravity theory, so that

a · b, b · b are integers. The coefficients AR, BR, CR are numerical constants associated with

each representation computed from

trRF
2 = ARtrF 2 (2.4)

trRF
4 = BRtrF 4 + CR(trF 2)2 . (2.5)

When multiple gauge factors Gi = SU(Ni) are involved, each gauge factor has an

associated vector bi in the anomaly lattice, and we have the further condition

bi · bj =
∑
R,S

xijRSA
i
RA

j
S , (2.6)

where xijRS is the number of fields in the representation R⊗ S of Gi ×Gj . In the simplest

cases we are interested in here, these are bifundamental representations.

There is also a constraint that arises from the purely gravitational anomaly cancellation

condition

nH − nV = 273− 29nT , (2.7)

where nH , nV , nT are the numbers of matter hypermultiplets, vector multiplets, and tensor

multiplets in the theory respectively.

When the only types of matter that arise are in k-index antisymmetric (Λk) represen-

tations of SU(N), we have, for some integer n,

b · b = n, −a · b = n+ 2 . (2.8)

In the F-theory picture, these configurations come from gauge groups wrapped on rational

(genus zero) curves of self-intersection n.

The dimension and coefficients AR-CR for the adjoint, fundamental, symmetric, anti-

symmetric, and three-and four-index antisymmetric representations of SU(N) are listed in

table 1 along with the “genus” contribution of each representation ([5, 12, 13]).

The following combinations of SU(6) matter fields give equivalent contributions to

each of the anomaly cancellation conditions (including the purely gravitational anomaly

condition nH − nV = 273− 29nT ).

1

2
20

(
1

2

)
+ 6 ( ) ↔ 15

( )
+ 1 . (2.9)

We refer to these combinations of matter fields as anomaly equivalent [6]. Note that

we can have a half-hypermultiplet for the 20, since this is a self-conjugate (pseudoreal)

representation of SU(6). These combinations of representations can be seen to be equivalent

by checking that the contribution to each of the terms
∑

R xRAR,
∑

R xRBR,
∑

R xRCR are

the same on both sides of (2.9). The equivalence of these representations under the anomaly

conditions suggests that there is no obstruction to a transition between SU(6) theories

with the different matter representations. Explicit local models from F-theory realizing
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Rep. N Dimension AR BR CR g

Adj. N N2 − 1 2N 2N 6 1

6, 7, 8 35, 48, 63 12, 14, 16 12, 14, 16 6 1

N N 1 1 0 0

N N(N+1)
2 N + 2 N + 8 3 1

6, 7, 8 21, 28, 36 8, 9, 10 14, 15, 16 3 1

N N(N−1)
2 N − 2 N − 8 3 0

6, 7, 8 15, 21, 28 4, 5, 6 -2, -1, 0 3 0

N N(N−1)(N−2)
6

N2−5N+6
2

N2−17N+54
2 3N − 12 0

6, 7, 8 20[10], 35, 56 6[3], 10, 15 -6[-3], -8, -9 6, 9, 12 0

N N(N−1)(N−2)(N−3)
24

(N−2)(N−3)(N−4)
6

(N−4)(N2−23N+96)
6

3(N2−9N+20)
2 0

8 70[35] 20[10] -16[-8] 18[9] 0

Table 1. Values of the group-theoretic coefficients AR, BR, CR, dimension and genus for some

representations of SU(N), N ≥ 4, with specific values computed for convenience for N = 6, 7, 8.

Values in brackets refer to half-hypermultiplets for self-conjugate representations.

transitions between these matter representations were identified in [5], as described in

more detail in the following section. The main focus of this paper is the detailed analysis

of this and related types of matter transitions in global models from the dual F-theory and

heterotic perspectives.

For SU(7), there is a similar type of anomaly equivalence and associated transition

35
( )

+ 5× 7 ( ) ↔ 3× 21
( )

+ 7× 1 . (2.10)

For SU(8), there are anomaly equivalent matter representations

56
( )

+ 9× 8 ( ) ↔ 4× 28
( )

+ 16× 1 . (2.11)

and
1

2
70

(
1

2

)
+ 8× 8 ( ) ↔ 3× 28

( )
+ 15× 1 . (2.12)

In the following sections, we describe the extent to which these equivalences correspond

to transitions that have realizations in global F-theory and heterotic models. There is a

similar anomaly equivalence for the 3-index antisymmetric (Λ3) representation of SU(9),

which we discuss further below. Similar equivalences would seem at first to be possible for

Λ3 representations of SU(10) and higher SU(N) and for Λ4 representations of SU(9) and

above, etc., but global considerations (discussed below) seem to rule out such models for

all values of T .
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2.2 SU(N) blocks in 6D supergravity

The anomaly conditions constrain the total matter content that can be charged under a

given component SU(N) of the full 6D gauge group. For the most generic 6D SU(N)

models with specific values of b · b = n, a “genus” g = 1 − (a · b + b · b)/2, and N ≥ 4,

the matter content contains only adjoint, fundamental, and antisymmetric representations,

and is given by

g × (adjoint) + [16(1− g) + (8−N)n]× + (n+ 2− 2g)× . (2.13)

The sense in which this matter content is the most generic is that it corresponds to the

theory with the largest number of uncharged scalar fields. Each of the anomaly-equivalent

combinations involving a triple or quadruple-antisymmetric representation described above

removes some number of scalar matter fields, corresponding to a more refined “tuning” of

the low-energy field theory model.

For genus g = 0 models, we have the following spectra for SU(6), SU(7), SU(8), where

b · b = n

SU(6) : (16 + 2n+ r)× 6( ) + (n+ 2− r)× 15
( )

+ r × 1

2
20

(
1

2

)
. (2.14)

SU(7) : (16 + n+ 5r)× 7( ) + (n+ 2− 3r)× 21
( )

+ r × 35
( )

. (2.15)

SU(8) : (16+9r+8r′)×8( ) + (n+2−4r−3r′)×28
( )

+r×56
( )

+r′× 1

2
70

(
1

2

)
.

(2.16)

The possible matter spectra for SU(6) factors was described in [14] and there also

related to F-theory and heterotic theory. As we see in the later sections, both in F-

theory and heterotic theory all of the SU(6) and SU(7) 6D models can be realized through

global constructions, and there are matter transitions along paths in the space of theories

that change between different values of r without changing the gauge group (i.e., without

involving Higgsing processes). We have identified explicit constructions only for a subset of

the possible SU(8) models, as discussed in further detail below, and it is less clear whether

there is a UV-consistent description of the SU(8) transitions.

We briefly summarize the situation for SU(N) blocks with N > 8. For SU(9), the

generic g = 0 model has 16−n fundamentals (9’s) and (n+ 2) antisymmetrics (36’s). The

SU(9) model with a Λ3 representation and the smallest number of matter fields has n = 3

and at least 327 matter fields (1× 84 +27× 9). Thus, in the absence of other gauge factors,

nH −nV ≥ 327−80 = 247. SU(9) models with a Λ3 representation appear to be consistent

in nT = 0 supergravity (with nH−nV = 273), though these models cannot have a heterotic

description on a smooth K3. It seems just barely possible to construct SU(9) models with

nT = 1, where nH −nV = 244, which should in principle have an F-theory description and

heterotic duals. For example, by adding an SU(3) factor, such as can be done in a heterotic

– 6 –
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model with 12±3 instantons in the two E8 factors, corresponding to F-theory on F3, there

is just enough room to satisfy the gravitational anomaly bound. As we discuss in the

following sections, however, it is not clear whether or how these models may be realized

in either the F-theory or heterotic constructions. Similar considerations of the global

gravitational anomaly condition show that SU(9) models with Λ4 or SU(10) models with

Λ3 representations are not possible even with nT = 0, assuming there are no further gauge

factors. Note that this argument does not completely rule out 6D supergravity models in

which the fundamentals of e.g. SU(9) with a Λ4 are also charged under additional gauge

factors, effectively increasing nV without changing nH , or models where there is a second,

non-Higgsable gauge factor, which contributes to nV without a corresponding contribution

to nH . But such models seem very difficult to construct in a consistent fashion. Note also

that the constraints just discussed rely on the purely gravitational anomaly cancellation

condition, and do not in principle constrain the existence of e.g. SU(10) models with Λ3

representations in 6D field theory.

2.3 Higgsing processes

The different models with matter transitions that we consider are connected to one another,

and to other related models, by a network of Higgsing transitions, many of which were also

considered in [14]. In general, Higgsing a gauge group SU(N) in a supersymmetric theory

requires turning on a vacuum expectation value (VEV) for matter fields that transform in

nontrivial representations. In the language of 4D N = 1 theories, such expectation values

must be turned on in such a way that the D-term constraints of the form
∑

i φ̄iTAφi = 0

are satisfied for each generator TA of the Lie algebra.

2.3.1 Higgsing fundamentals

The simplest Higgsing of SU(N) is done by giving vacuum expectation values to two fun-

damental fields. Note that two fundamental fields must be given VEVs in order to satisfy

the D-term constraints in the supersymmetric theory. Supersymmetric Higgsing on a single

fundamental of SU(N) is not possible. Recall that each full 6D N = 1 hypermultiplet in

a given representation R contains fields in both the representation R and its conjugate,

so when Higgsing two fundamental fields we are really giving expectation values to a field

component in the representation R and another field component in the conjugate represen-

tation R̄, allowing the D-term constraint to be satisfied. For example, for the fundamental

representation any VEV can be rotated into the canonical form (0, 0, . . . , 0, v). This can

be described in the language of Young tableaux by a single box containing the value [N ].

When two fundamental fields are given VEVs in this way, the gauge group is broken down

to SU(N−1). The Goldstone bosons of the Higgsed matter fields are “eaten” by the broken

gauge generators in the usual fashion. In 6D supergravity theories this matches with the

gravitational anomaly cancellation condition nH − nV = 273− 29nT .

Explicitly, we can match the number of Goldstone bosons 2N − 1 with the number of

broken gauge generators [N2 − 1] − [(N − 1)2 − 1] = 2N − 1. After breaking SU(N) →

– 7 –
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SU(N − 1), the other representations branch as follows:

N → N−1 + 1 (2.17)

N
→

N−1
+ N−1 (2.18)

N
→

N−1
+

N−1
(2.19)

8

→
7

+
7

=
7

+
7
. (2.20)

This can easily be understood by looking at the Young tableaux for each representation;

the k-antisymmetric representation with an N entry goes to a (k − 1)-antisymmetric rep-

resentation, and the tableaux without an N entry go to a k-antisymmetric representation

of SU(N − 1). The dimensions of these sets of representations match as, for example in

the case of triple antisymmetrics,

N(N − 1)(N − 2)

6
=

(N − 1)(N − 2)(N − 3)

6
+

(N − 1)(N − 2)

2
. (2.21)

We can see that this Higgsing process takes an SU(N) model with a specific value of n

to an SU(N − 1) model with the same value of n between the models (2.14), (2.15), (2.16).

Higgsing the SU(7) models with a value r7 > 0 gives the corresponding SU(6) model with

twice that value of r6 = 2r7. Higgsing an SU(8) model with r8 > 0, r′8 ≥ 0 gives the SU(7)

model with r7 = r8 + r′8.

In short, in breaking SU(N) to SU(N − 1) on a fundamental representation, we lose

two full hypermultiplets in the N− 1 (fundamental) representation of SU(N − 1) and one

singlet full hypermultiplet. This accounts for a reduction of 2N − 1 full hypermultiplet

degrees of freedom, one for each gauge boson that becomes massive, as required by the

six-dimensional super-Higgs mechanism.

2.3.2 Higgsing antisymmetric representations

We can similarly Higgs two antisymmetric representations, giving VEVs to states with

Young tableau entries [N − 1, N ]. This breaks

SU(N)→ SU(N − 2)× SU(2) (2.22)

The two antisymmetrics that break the gauge group have 2(N −2) Goldstone bosons each,

corresponding to states with Young tableaux having entries [i, j] with i ≤ N−2, j ≥ N−1,

and the number of generators in the group is reduced by

[N2 − 1]− [(N − 2)2 − 1]− [3] = 4N − 7 = 2× (2N − 4) + 1 . (2.23)

Together with the loss of an additional singlet hypermultiplet (containing one goldstone

boson and 3 degrees of freedom fixed by D-terms) the number of degrees of freedom match.

The antisymmetric representations break down in the decomposition (2.22) as

N = N−2 × 1 + 1× 2 (2.24)

N
=

N−2
× 1 + N−2 × 2 + 1× 1 (2.25)

N
=

N−2
× 1 +

N−2
× 2 + N−1 × 1 (2.26)

– 8 –
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For the two Λ2 fields that take VEVs, one singlet is the VEV component, and the other

singlet and the bifundamental degrees of freedom are the ones that are lost, so the number

of antisymmetric representations stays unchanged in the breaking.

More generally, Higgsing two k-antisymmetric representations breaks

SU(N)→ SU(N − k)× SU(k) . (2.27)

There are 2k(N − k) + 1 degrees of freedom eaten by the lost gauge bosons, and again the

k-antisymmetrics are preserved under the breaking and the bifundamentals and singlets

are lost.

2.4 Product groups and transitions

6D models with multiple SU(N) gauge factors can be constructed in close parallel to the

single-block models with one SU(N) factor. We consider models where SU(N) and SU(M)

are both realized as in section 2.2, with the same value of b in the anomaly lattice, so that

b1 · b1 = b2 · b2 = b1 · b2 = n. These are product group models with a smooth heterotic

dual. Generically, the intersection condition (2.6) is satisfied by including n bifundamental

(N,M) fields in the spectrum. For example, for n ≥ 0, the spectrum for the generic

SU(4)× SU(2) model is

(n+ 2)×
(

4
× 1
)

+n× ( 4 × 2) + (16 + 2n)× ( 4 × 1) + (16 + 2n)× (1× 2) . (2.28)

Just as Higgsing SU(8) or SU(7) models on a pair of fundamentals relates models with

a non-generic (e.g. Λ3) representation to other such models, Higgsing on antisymmetric

representations also gives rise to exotic matter structures for product groups. For exam-

ple, consider breaking an SU(6) model with r half-hyper Λ3 representations on a pair of

antisymmetric (Λ2) representations. Then, from (2.26), each of the r 1
220’s breaks as

1

2 6
→ ( 4 × 1) +

(
1

2 4
× 2

)
. (2.29)

In general, this gives an SU(4) × SU(2) model with spectrum

r ×
(

1

2 4
× 2

)
+ (n+ 2− r)×

(
4
× 1
)

+ (n− r)× ( 4 × 2) (2.30)

+(16 + 2n+ 2r)× ( 4 × 1) + (16 + 2n+ r)× (1× 2) . (2.31)

From this spectrum we see that there must be an anomaly equivalence(
1

2 4
× 2

)
+ 2× ( 4 × 1) + (1× 2)↔ (

4
× 1) + ( 4 × 2) + 2× (1× 1) . (2.32)

Indeed, this relation also follows from a direct Higgsing of (2.9) under the breaking SU(6)

→ SU(4) × SU(2).

A similar transition can be found for SU(5) × SU(2) theories by breaking SU(7):

(
5
× 2)+6× ( 5×1)+5× (1× 2) ↔ 2× (

5
×1)+3× ( 5× 2)+10× (1×1) . (2.33)
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And for SU(6) × SU(2) by breaking SU(8) on a pair of antisymmetric representations:

(
6
× 2)+8× ( 6×1)+9× (1× 2) ↔ 2× (

6
×1)+4× ( 6× 2)+18× (1×1) . (2.34)

These relations suggest that transitions between theories with these different matter

contents should be possible; in the later sections of this paper we explicitly identify these

transitions in F-theory and heterotic theories. While we find that the SU(4) × SU(2) and

SU(5) × SU(2) transitions are described nicely in both F-theory and the heterotic theory,

the SU(6) × SU(2) transition is less clear. The representation that transforms as an anti-

symmetric field under SU(N) and a fundamental under SU(M) is an exotic representation,

analogous in many ways to the triple-antisymmetric representation of SU(N). Generalizing

these constructions, we can Higgs on a pair of triple-antisymmetric representations; this

gives interesting transitions in SU(N) × SU(3) theories, as we explore to some extent in

the following sections.

It would be interesting to explore further product representations and associated tran-

sitions. For example, Higgsing the relation (2.12) on a pair of antisymmetric representations

suggests that there should be a transition in SU(6) × SU(2) theories(
1

2 6
× 2

)
+8×( 6×1)+8×(1× 2)↔ 2×(

6
×1)+3×( 6× 2)+16×(1×1) . (2.35)

Since we have not identified an explicit realization of the Λ4 representation of SO(8) in

either the F-theory or heterotic pictures, however, it is not clear whether this transition

can be realized in consistent 6D supergravity theories. One could also use this approach to

explicitly construct representations such as the trifundamental of SU(2) × SU(2) × SU(2)

by breaking the (6,2) of SU(4) × SU(2) to (2,2,2) by breaking SU(4) → SU(2) × SU(2).

And the relations (2.32)–(2.34) suggest that similar transitions may occur for higher groups

such as SU(7) × SU(2). We leave further exploration of these possibilities to future work.

3 F-theory description of matter transitions

F-theory provides powerful methods for realizing stringy constructions of supergravity the-

ories. In this section, we give F-theory realizations of the models with matter transitions

described above, building on the work of [5]. These F-theory models provide further in-

sights into the mechanisms behind the matter transitions.

3.1 F-theory overview

Here, we briefly describe those aspects of F-theory that will be important in the upcoming

analysis. More extensive reviews of F-theory can be found in [15–17].

3.1.1 Weierstrass models

F-theory [2, 18, 19] is a method for compactifying type IIB string theory in situations where

the axiodilaton is allowed to vary over the compactification space. The axiodilaton and the

corresponding SL(2, Z) symmetry appear geometrically through an elliptic fibration over
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the compactification base. Specifically, an F-theory compactification to 10−2d dimensions

is given by an elliptic fibration over a base B of complex dimension d. These elliptic

fibrations can be described using the Weierstrass form

y2 = x3 + fx+ g. (3.1)

Here, y and x are coordinates describing an elliptic curve, while f and g vary over the base

B. To preserve supersymmetry, the total elliptic fibration must be a Calabi-Yau manifold.

As a result, f and g must respectively be sections of O(−4KB) and O(−6KB), where KB is

the canonical class of the base B. Note that B does not necessarily need to be a Calabi-Yau

manifold on its own.

The sections f and g can be described locally near a divisor Σ on B using the formalism

of [20, 21]. Let Σ have an associated coordinate σ, so that Σ = {σ = 0}. We can then

expand f and g in terms of σ as

f = f0 + f1σ + f2σ
2 + . . . (3.2)

and

g = g0 + g1σ + g2σ
2 + . . . . (3.3)

The coefficients fk and gk are respectively sections of O(−4KΣ+(4−k)NΣ) and O(−6KΣ+

(6−k)NΣ), where −KΣ and NΣ are the anti-canonical and normal line bundles for Σ. Note

that in general the coordinate σ is not globally defined, and only the first nonvanishing

fk, gk is uniquely defined, as discussed in more detail in [21]. These subtleties are irrelevant

for the discussion in this paper; for toric bases, in particular, σ can always be taken as a

global toric coordinate.

While the analysis in this section is quite general, and applies to 4D as well as 6D

F-theory models, in this paper we focus particularly on F-theory compactifications to 6D

with heterotic duals, where the compactification base B is one of the Hirzebruch surfaces

Fn. For a description of Hirzebruch surfaces from an F-theory perspective, see [17, 19].

Hirzebruch surfaces are complex two-dimensional surfaces that can be described as P1

bundles over P1. The divisors of Fn have a basis consisting of divisors S and F . F and

S span the cone of effective curves on Fm. S is a section of the fibration, with a 1-1 map

to the P1 base of Fn, and has self-intersection number −n (i.e. S · S = −n). F meanwhile

refers to the fiber P1, and satisfies S · F = 1 and F · F = 0. Another important divisor

class for Fn is S̃ = S + nF , which satisfies S · S̃ = 0 and S̃ · S̃ = n. The anti-canonical

class of Fn is

−KFn = 2S + (n+ 2)F, (3.4)

so f and g are sections of O(8S + (4n + 8)F ) and O(12S + (6n + 12)F ). In most of our

analysis we will tune the relevant gauge groups on S̃. We thus associate the coordinate

σ with S̃ and z with F , f and g are therefore polynomials of order 8 and 12 in σ, at
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maximum. Using equations (3.2) and (3.3), we can expand f and g around S̃ as

f =
8∑

k=0

fkσ
k,

g =

12∑
k=0

gkσ
k.

fk and gk can be described in terms of a common line bundle on P1, which we take to be

O(1). −KS̃ is then equivalent to 2, while NS̃ is n. fk and gk are thus polynomials in z of

order 8 + n(4 − k) and 12 + n(6 − k). For n ≥ 3, some of the fk or gk may be ineffective

for k ≤ 8 or k ≤ 12, meaning that higher order terms in σ must vanish. This signals the

presence of a non-Higgsable cluster (described below) on S. The expressions for f and g

given above are in fact the generic expansions near a +n curve, so long as the limits of k

are adjusted for the appropriate situation.

3.1.2 Gauge groups in F-theory

In F-theory, the total elliptically-fibered compactification space may admit certain types of

singularities. Singularities of the fibration occur at loci where the discriminant ∆, defined as

∆ = 4f3 + 27g2, (3.5)

equals zero. Some of these singularities in the fibration give singularities in the total

space as well. In general, not all singularities in the total space can be resolved to give

a smooth Calabi-Yau manifold. Kodaira classified all of the resolvable singularities for

situations where the singularity occurs along a codimension one locus on the base [22, 23].

As summarized in table 2, the resulting singularities can be described by the orders of

vanishing of f , g, and ∆ on the codimension one locus. If f and g vanish to orders 4

and 6 or greater on a codimension one locus, the resulting singularity has no Calabi-Yau

resolution. For F-theory compactifications, singularities that arise over codimension one

loci on the base can always be resolved to give a smooth Calabi-Yau manifold and obey

the Kodaira classification.

When an F-theory compactification has such a codimension one singularity, the phys-

ical theory has a corresponding nonabelian gauge symmetry. Resolving the codimension

one singularity will produce a set of 2-cycles whose intersection pattern can be mapped

to a Dynkin diagram. The Dynkin diagram then identifies the algebra for the physical

model’s gauge symmetry. In this paper we generally describe theories using the Lie group,

with the understanding that only the algebra is actually fixed definitively by F-theory, and

that the given Lie group may be subject to a quotient by a finite discrete subgroup. Note

that monodromy effects need to be considered when compactifying to 6D or 4D, meaning

that the same Kodaira fiber type can give different gauge algebras. In such cases, deter-

mining the resulting gauge group requires a more in-depth analysis of f , g, and ∆ (see, for

example, [14, 24]). An example is the split condition, where an In fiber can correspond to

either an su algebra or an sp algebra depending on the form of f0 and g0.
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Fiber Type ord(f) org(g) ord(∆) Singularity Type Gauge Algebra

I0 0 0 1 none none

In 0 0 n An−1 su(n) or sp(bn2 c)
II ≥ 1 1 2 none none

III 1 ≥ 2 3 A1 su(2)

IV ≥ 2 2 4 A2 su(2) or su(3)

I∗0 ≥ 2 ≥ 3 6 D4 g2, so(7) or so(8)

I∗n 2 3 n+ 6 Dn+4 so(2n+ 7) or so(2n+ 8)

IV ∗ ≥ 3 4 8 E6 f4 or e6

III∗ 3 ≥ 5 9 E7 e7

II∗ ≥ 4 5 10 E8 e8

Table 2. Kodaira classification of codimension one singularities in elliptic fibrations and corre-

sponding gauge algebras. When multiple gauge algebras are given, the gauge algebra is determined

by monodromy conditions.

The coefficients in f and g can be tuned to special values that satisfy the conditions in

table 2. In such cases, the gauge symmetry can be Higgsed by deforming the coefficients

away from their special values. However, when constructing Weierstrass models on rigid

divisors, some coefficients in the expansion of f and g around that divisor may be forced

to vanish, giving a gauge symmetry that cannot be removed by altering coefficients. These

gauge symmetries are known as non-Higgsable clusters and are discussed further in [21, 25].

Most of the examples we focus on here will involve tuned gauge symmetries rather than

non-Higgsable clusters.

The gauge symmetry discussion has focused on local features of the Weierstrass model

near a particular divisor. Local considerations are sufficient to determine the symmetry

algebra of a nonabelian, continuous gauge symmetry. Producing abelian or some discrete

symmetries involves creating an extra section in the elliptically fibered compactification

space, which, however, requires an analysis of global behavior. Our F-theory analysis will

mostly be concerned with nonabelian algebras, and local analyses involving expansions

such as (3.2) and (3.3) will suffice.

3.1.3 Matter

If an F-theory compactification to d ≤ 6 has a codimension one singularity, there generally

will be codimension two loci within the codimension one locus where the singularity type is

enhanced. These codimension two loci indicate that the model has matter charged under

the corresponding gauge algebra. In some cases, it is easy to determine the representations

of the charged matter. For example, if the singularity undergoes a rank-one enhancement

to a standard Kodaira fiber, the resulting charged matter can be found using the Katz-Vafa

method [26]. The enhanced singularity type has a corresponding gauge algebra; breaking

the adjoint of this enhanced gauge algebra to the original gauge algebra gives the matter

content. Importantly, the enhanced singularity does not represent an actual enhancement

of the gauge group. Breaking the adjoint of the enhanced singularity’s gauge algebra simply
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provides a convenient way of determining the matter content. As an example, consider a

situation where a codimension one An−1 singularity enhances to an An singularity on a

codimension two locus. The adjoint of An breaks as

Adj→ Adj + n + n̄ + 1. (3.6)

The n + n̄ term in the above breaking pattern represents the charged matter contributed

by each An locus. In particular, matter in 6D F-theory models must come in quaternionic

representations, and the n and n̄ combine to form a full multiplet in the Λ1 or represen-

tation. The Katz-Vafa analysis can be used for An−1 → Dn and A6 → E7 enhancements

as well.

However, the Kodaira classification is strictly valid only for codimension one, and

Kodaira codimension-one singularities can enhance to non-standard codimension-two sin-

gularities. Moreover, there can be codimension-two enhancements that do not enhance

the rank by exactly one. Determining the resulting matter in these cases requires a more

detailed analysis, as described in [5, 27–32]. Examples that will be of interest here are

the A5 → E6 and A7 → E8 enhancements described in [5]. The work of [33] presents an

alternative method of determining the matter content that does not require an explicit

resolution of singularities.

The number of singlet hypermultiplets corresponds to (one more than) the h2,1 of the

compactification space. Alternatively, the number of singlets can be found by counting

the number of complex degrees of freedom in the Weierstrass model. There is not a direct

1-1 equivalence between the Weierstrass degrees of freedom and the number of neutral

hypermultiplets, as automorphisms on the base and the effects of −2 curves must be taken

into account. The complete expression for relating the Weierstrass degrees of freedom to

the number of neutral hypermultiplets is given in [34].

3.1.4 Superconformal points and tensionless string transitions

In some situations, a codimension two locus can have an enhanced singularity such that f

and g vanish to orders 4 and 6. Resolving these codimension two singularities requires a

blow-up on the base, as described in [2, 35]. In contrast, the codimension-two enhanced

singularities giving matter can be resolved using blow-ups only on the elliptic fiber. From a

field theory perspective, blowing up the base introduces an additional tensor multiplet, and

the size of the new P1 corresponds to the expectation value 〈S〉 of the tensor multiplet’s

scalar. The original codimension-two locus can then be thought of as describing the limit

where 〈S〉 approaches zero. 〈S〉 governs the tension of strings that couple to the tensor. In

the limit where 〈S〉 goes to zero, these strings becomes tensionless [36]. The blow-up and

blow-down processes associated with these codimension two loci are thus the tensionless

string transitions described in the literature [1, 37]. 〈S〉 also controls the couplings of any

gauge groups that appear after the blowup, and shrinking the exceptional curves to zero

size takes any such gauge group to its strongly coupled limit. These loci are associated with

6D superconformal field theories [38] and have been the focus of much recent work [39–43].

For this reason, we will refer to these codimension two loci as superconformal points.
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The tensionless string transitions provide a means of connecting F-theory compactifica-

tions on different bases, playing a similar role as the small instanton transitions of heterotic

string theory [1, 2]. For instance, one can blow up F1 at a point and perform a subsequent

blow-down to obtain an F-theory compactification on F2. In fact, all 6D F-theory com-

pactifications are connected into a single moduli space by such transitions [1, 9]. In some

cases, the matter content can change during such a tensionless string transition, as in the

chirality-changing 4D phase transitions studied in [3, 4, 10, 11]. Such transitions involve a

change in the number of tensor multiplets. The transitions we consider here differ in that

they also involve passing through a superconformal point in the moduli space of vacua,

but do not involve a change in the number of tensor multiplets, and are also distinct from

Higgsing/unHiggsing transitions, which always involve a change in the gauge field content

of the theory and generally do not involve passing through a superconformal point.

3.2 F-theory tunings of SU(6)–SU(8) models

In this section, we derive the explicit local forms of the Weierstrass models for SU(6)−SU(8)

that will be used to analyze the transitions. We mostly use the conventions of [5], where

gauge groups were tuned on a divisor D with associated coordinate σ. We assume in

particular that the divisor D is smooth and that we are working over a unique factorization

domain (UFD). When D is singular there are more complicated ways of realizing SU(N)

gauge groups, which generally involve representations other than the adjoint and k-index

antisymmetric representations studied in this section; we describe one such example in

section 6.3. This general analysis is valid for an arbitrary choice of F-theory base B, which

could be of complex dimension two or three and an arbitrary smooth effective divisor D.

For the rest of this F-theory section, −KB will refer to the anti-canonical class of the base,

and −K and N will refer to the anti-canonical class and the normal line bundle of D

unless stated otherwise. Additionally, we will often refer to the situation where the gauge

group is tuned on a +n curve in a 6D F-theory model (such as S̃ in Fn); n will be this

self-intersection number for the rest of the F-theory section, and in this case −K = 2 and

N = m.

3.2.1 SU(6)

General tunings for SU models up to SU(6) were found in [5]. Here, we repeat the derivation

of the SU(6) model as a warmup for subsequent tunings. As described in [5], the f and g

for an SU(5) Weierstrass model are

f =
−φ4

0

48
− 1

6
φ2

0φ1σ +

(
φ0ψ2

2
− φ2

1

3

)
σ2 +O(σ3), (3.7)

g =
φ6

0

864
+

1

72
φ4

0φ1σ +

(
φ2

0φ
2
1

18
− φ3

0ψ2

24

)
σ2 +

1

108

(
8φ3

1 − 18φ0φ1ψ2 − 9φ2
0f3

)
σ3

+
1

12

(
3ψ2

2 − 4φ1f3 − φ2
0f4

)
σ4 +O(σ5). (3.8)

Here φ0, φ1, . . . are sections of certain line bundles over D, which can be thought of locally as

polynomials in a local set of variables on D. For example, since f is a section of O(−4KB),
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φ0 must be a section of O(−KB), which descends to O(−K +N) on D. The discriminant

of this SU(5) tuning vanishes to order σ5, as expected:

∆ =
φ4

0

192

[
12φ1ψ

2
2 − 12f3ψ2φ0 + φ2

0

(
12g5 + 4f4φ1 + f5φ

2
0

)]
σ5 +O(σ6). (3.9)

For the SU(6) tuning, the discriminant must vanish to O(σ6), while f and g cannot

be proportional to σ. These requirements demand that the term in square brackets in

equation (3.9) vanishes. φ1ψ
2
2 must therefore be proportional to φ0, as every other term in

the square brackets is at least first order in φ0. However, the various factors in φ0 can be

distributed in any way between φ1 and ψ2
2. We can rewrite φ0, φ1 and ψ2 in a way that

explicitly resolves this ambiguity. Defining α to be the GCD of φ0 and ψ2, we have

φ0 = αβ, (3.10)

φ1 = βν, (3.11)

ψ2 = −1

3
αφ2. (3.12)

With these redefinitions, the discriminant now reads

∆ =
α6β5

576

[
4φ2

(
3f3 + νφ2

)
+ 36βg5 + 3β2

(
4f4ν + α2βf5

)]
σ5 +O(σ6). (3.13)

Removing the lowest order term in β requires that there exists a λ such that

f3 = −1

3
νφ2 − 3βλ. (3.14)

Note that φ2 does not share any factors with β, under the assumption that α is the GCD

of φ0 and ψ2. After tuning f3, all the terms under consideration are sixth-order in β, and

we can solve for the g5 that makes ∆ vanish to O(σ6).

g5 = λφ2 −
1

3
βνf4 −

1

12
α2β2f5. (3.15)

The final f and g for the SU(6) tuning are

f = −α
4β4

48
− 1

6
α2β3νσ − β

6

(
α2φ2 + 2βν2

)
σ2 −

(
3βλ+

νφ2

3

)
σ3 +O(σ4) (3.16)

and

g =
α6β6

864
+
α4β5

72
νσ +

α2β3

72

(
4βν2 + α2φ2

)
σ2 +

β2

108

(
8βν3 + 9α2νφ2 + 27α2βλ

)
σ3

+
1

36

(
4βν2φ2 + α2φ2

2 + 36β2νλ− 3α2β2f4

)
σ4

+
1

12

(
12λφ2 − 4βνf4 − α2β2f5

)
σ5 +O(σ6) (3.17)

The SU(6) model has five free parameters (apart from the untuned fk and gk), which

are summarized in table 3. Each parameter is a section of a line bundle over D. One

– 16 –



J
H
E
P
0
4
(
2
0
1
6
)
0
8
0

Parameter Divisor Class Order on +n curve Associated Matter

α −K +N − L n+ 2− r (15)

β L r 1
2

(
1
220

)
ν −2K +N − L n+ 4− r —

φ2 −2K + L 4 + r —

λ −4K +N − L n+ 8− r —

Table 3. Free parameters in the general SU(6) Weierstrass model. r must be greater than or equal

to 0 and less than n+ 2

parameter, which we have chosen to be the divisor class L associated with β, is independent.

Once this divisor class is fixed, all the other divisor classes can be computed from the form

of the expansion and the divisor classes of f, g. On the zeroes of α, (f, g,∆) vanish to orders

(2, 3, 8), and the singularity type is enhanced to D6. Every zero of α therefore contributes

a full multiplet in the representation. A zero of β meanwhile enhances the singularity

type to E6, giving a half-multiplet in the representation. Fundamental matter comes

from codimension two loci where (f, g,∆) vanish to orders (0,0,7) and the singularity type

enhances to A6. Finally, the number of neutral multiplets can be found by counting the

number of degrees of freedom, as described previously. The resulting multiplicities agree

with the expected supergravity spectrum of equation (2.14).

3.2.2 SU(7)

Some aspects of SU(7) tunings were discussed in [5], but a general SU(7) tuning was not

given there. Instead, tunings were presented for two limiting cases of the matter spectrum;

the models lacked either (21) matter or (35) matter. We present a more general SU(7)

tuning that can exhibit any of the antisymmetric matter spectra consistent with anomaly

conditions.

The discriminant of the SU(6) model has the form

∆=
α4β3

432

[
α2

(
φ3

2 + 9β2φ2f4 + 27β3g6 + 9β4f5ν+ 9
α2β5

4
f6

)
− 3β

(
νφ2− 9βλ

)2
]
σ6 +O(σ7).

(3.18)

For the SU(7) tuning, ∆ must vanish to O(σ7). As noted in [5], this demands that α2 is

proportional to β. We can implement this requirement by rewriting α and β as

β = γδ2,

α = γδξ.

This decomposition is uniquely defined if we impose the condition that γ be square-free.

These redefinitions would in turn require ν to be proportional to γ, so we will temporarily
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write ν as γζ. The term in square brackets in equation (3.18) would then be equivalent to

γ2δ2

[
ξ2γ2δ4

(
9f4φ2 + 27γδ2g6 + 9γ3δ4f5ζ +

9

4
ξ2γ5δ8

)
− 3γ

(
ζφ2− 9δ2λ

)2
+ ξ2φ3

2

]
. (3.19)

φ2 cannot share any factor with γ, since it shares no factors with β. ξ2 must therefore

be proportional to γ, and since γ is square-free, ξ must be proportional to γ. Then, the

term lowest order in γ would be 3γ(ζφ2 − 9δ2λ)2, implying that ζφ2 − 9δ2λ must also be

proportional to γ. Then, 3γ(ζφ2 − 9δ2λ)2 would be order γ3, in turn demanding that ξ

must be proportional to γ2. The tuning is stuck in a never-ending cycle where the two

terms must be proportional to greater and greater powers of γ. The only way out of this

cycle is if γ is a perfect square, which would violate the earlier square-free assumption. γ

(and ζ) should therefore be ignored in the α and β redefinitions, leaving

β = δ2 (3.20)

α = δξ (3.21)

We will continue to refer to ν and will not use γ or ζ from this point.

Equations (3.20) and (3.21) could have been anticipated from field theory considera-

tions alone. While each zero of β gives 1
2 of SU(6) matter, matter in the SU(7) (35)

representation must come in full multiplets. When the SU(7) model is Higgsed to SU(6),

each 35 multiplet will give two 1
220s of SU(6). Any zeroes that produce 35s in the SU(7)

must therefore provide β with two identical factors when the Weierstrass model is deformed

to an SU(6) model. In other words, β must be a perfect square, in agreement with equa-

tion (3.20). Each 35 also gives a full 15 multiplet. From (3.20), we expect that the zeroes

of δ will give the 35s of SU(7), so α must be proportional δ. The above redefinitions addi-

tionally imply that some SU(6) models cannot be enhanced to SU(7). Eq. (3.20) and (3.21)

require the divisors L′ ∼ 1
2L and −K+N −3L′ to be effective. For the +n curve situation,

only SU(6) models where r6 is even and where n + 2 ≥ 3
2r6 can be enhanced to SU(7).

These restrictions follow naturally from the SU(7) → SU(6) branching patterns.

With the redefinitions for α and β, the discriminant is now given by

∆ =
δ12ξ4

432

[
ξ2δ4

(
9f4φ2 + 27δ2g6 + 9δ4f5ν +

9

4
ξ2δ8

)
− 3
(
νφ2 − 9δ2λ

)2
+ ξ2φ3

2

]
. (3.22)

Considering the lowest order term in δ gives the constraint

φ2
2

(
ξ2φ2 − 3ν2

)
∝ δ2. (3.23)

To satisfy this condition, one could argue that when ξ = 0, from (3.22) ν should be

proportional to δ2. This would suggest that we redefine ν as

ν = ζ1ξ + ζ2δ
2, (3.24)

where ζ1 and ζ2 are independent, untuned polynomials. Note that we could have also

considered the possibility that ξ and ν share some common factors with δ. However,
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this possibility will end up being a special point in the moduli space of tunings found

using (3.24). More specifically, the tuning involving common factors can be derived by

taking the tuning found using (3.24) and further demanding that ξ, ν, and δ share common

factors. Therefore, equation (3.24) will be sufficient to find a general tuning, and we do

not need to consider the possibility of shared factors in this step.

Ultimately, we will want to solve for g6 to make the sixth order term of ∆ vanish.

There are still lower order terms to deal with before we can solve for g6, but these terms

can be removed using a set of standard polynomial redefinitions:

φ2 = 3ζ2
1 + δ2ω, (3.25)

λ =
1

3
ζ2

1ζ2 −
1

18
ζ1ξω +

1

9
ζ2δ

2ω + ξδ2λ1, (3.26)

f4 = −6ζ1λ1 −
1

12
ω2 + ψ4δ

2. (3.27)

ω, λ1, and ψ4 are free parameters. We can then solve for g6:

g6 =
−1

108

[
ω3 +108ζ1

(
λ1ω+ ζ1ψ4

)
+36δ2

(
ψ4ω−27λ2

1 +f5(ζ1ξ+ ζ2δ
2)+

ξ2δ4

4
f6

)]
. (3.28)

The final tunings are

f =− δ12ξ4

48
− δ8ξ2

6

(
ζ1ξ + ζ2δ

2
)
σ − δ4

6

(
2δ4ζ2

2 + 4δ2ζ1ζ2ξ + ξ2(5ζ2
1 + δ2ω)

)
σ2

− 1

6

(
4δ2(3ζ2

1ζ2 + δ2ζ2ω) + ξ(6ζ3
1 + δ2ζ1ω + 18δ4λ1)

)
σ3

− 1

12

(
ω2 + 72ζ1λ1 − 12δ2ψ4

)
σ4 +O(σ5)

(3.29)

and

g =
δ18ξ6

864
+
δ14ξ4

72

(
ζ1ξ + ζ2δ

2
)
σ +

δ10ξ2

72

(
4δ4ζ2

2 + 8δ2ξζ1ζ2 + 7ζ2
1ξ

2 + δ2ξ2ω
)
σ2

+
δ6

216

(
16δ6ζ3

2 + 48δ4ξζ1ζ
2
2 + 120δ2ζ2

1ζ2ξ
2 + 70ζ3

1ξ
3

+ 54δ4ξ3λ1 + 24δ4ζ2ξ
2ω + 15δ2ξ3ζ1ω

)
σ3

+
δ2

144

(
84ζ4

1ξ
2 + δ4(96ζ2

1ζ
2
2 + 5ξ2ω2 + 8ζ1ξ(27λ1ξ + 5ζ2ω))

+ 16δ2ζ2
1ξ(9ζ1ζ2 + 2ξω) + 4δ6(36ζ2λ1ξ − 3ξ2ψ4 + 8ζ2

2ω)
)
σ4

+
1

36

(
2
(

3ζ2
1 + δ2ω

)(
6ζ2

1ζ2 − ζ1ξω + 2δ2(9λ1ξ + ζ2ω)
)
− 3δ6ξ2f5

− δ2
(
δ2ζ2 + ζ1ξ

)(
− 72ζ1λ1 + 12δ2ψ4 − ω2

))
σ5

−

(
ω3

108
+ ζ1

(
λ1ω + ζ1ψ4

)
+
δ2

3

(
ψ4ω − 27λ2

1 + f5ν +
ξ2δ4

4
f6

))
σ6 +O(σ7).

(3.30)

There are seven free polynomials apart from the untuned fk and gk, which are given

in table 4. On the zeroes of ξ, the A6 singularity is enhanced to an D7 singularity, giving
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Parameter Divisor Class Order on +n curve Associated Matter

δ L′ r +

ξ −K +N − 3L′ n+ 2− 3r

ζ1 −K + L′ r + 2 —

ζ2 −2K +N − 4L′ n+ 4− 4r —

ω −2K 4 —

λ1 −3K − L′ 6− r —

ψ4 −4K − 2L′ 8− 2r —

Table 4. Degrees of freedom in SU(7) Weierstrass model. r and n must satisfy n+ 2 ≥ 3r.

matter in the (21). The zeroes of δ, meanwhile, enhance the singularity to E7; decom-

posing the E7 adjoint into A6 representations shows that each zero of δ corresponds to one

full (35) multiplet and one full multiplet in the fundamental (7) representation. When

the gauge group is tuned on a +n curve, there are an additional 16 + n+ 4r fundamentals

coming from codimension two loci where the discriminant vanishes to order 8. The charged

matter content agrees with the results from gauge anomaly cancellation conditions, as given

in equation (2.15).

As before, the number of neutral hypermultiplets corresponds to the total number of

complex degrees of freedom. A naive counting gives more degrees of freedom than expected

from the gravitational anomaly cancellation condition. However, the polynomials in table 4

can be redefined in the following way without changing f or g:

ζ1 → ζ ′1 = ζ1 + δ2ε,

ζ2 → ζ ′2 = ζ2 − ξε,

ω → ω′ = ω − 6ζ1ε− 3δ2ε2,

λ1 → λ′1 = λ1 +
1

6
ωε− 1

2
ζ1ε

2 − 1

6
δ2ε3,

ψ4 → ψ′4 = ψ4 + 6λ1ε+
1

2
ωε2 − ζ1ε

3 − 1

4
δ2ε4.

(3.31)

ε is a section of O(−K−L′), and on a +n curve, ε is a polynomial of order 2−r. Therefore,

2 − r + 1 of the complex degrees of freedom can be thought of as redundant and should

not be considered when finding the number of neutral hypermultiplets. Subtracting these

redundant degrees of freedom in fact leads to a number of neutral hypermultiplets consistent

with the anomaly cancellation conditions. It is unclear whether the redundancies can be

avoided in an alternative tuning or whether they are a necessary part of the tuning with

some physical interpretation.
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3.2.3 SU(8)

The SU(7) discriminant has the form

∆ = δ8ξ4
(
− 1

8
ζ7

1ξ +
1

4
ζ2ζ

6
1δ

2 +O(δ4, ξδ2)
)
σ7 +O(σ8) (3.32)

In order for ∆ vanish to O(σ8), ζ7
1ξ must be proportional to δ2. If δ and ζ1 share a common

factor, the resulting Weierstrass model will have a codimension two (4, 6) singularity. ξ

must therefore be proportional to δ2, and we can rewrite ξ as

ξ = δ2τ. (3.33)

∆ now reads

∆ = τ4δ18

[
ζ6

1

4

(
ζ2 −

1

2
ζ1τ
)

+O(δ2)

]
σ7 +O(σ8), (3.34)

implying that

ζ2 =
1

2
ζ1τ + ζ3δ

2. (3.35)

At this point, the leading order term in the discriminant is given by

∆ = τ4δ20

[
ζ5

1

16

(
4ζ1ζ3 − τω

)
+O(δ2)

]
σ7 +O(σ8). (3.36)

4ζ1ζ3 − τω must be therefore proportional to δ2. Following the same strategy as in the

SU(7) tuning, we could argue that, when δ = 0, ζ1 is proportional to τ . ζ1 would then

decompose as

ζ1 = τζ4 + δ2ζ5. (3.37)

However, equation (3.35) and the discussion of redundant degrees of freedom in the SU(7)

tuning suggests that ζ5 in the above decomposition could be absorbed into ζ3 and other

variables. Performing a full tuning with ζ5 indeed shows that ζ5 can be absorbed into other

polynomials with removing any degrees of freedom. ζ1 can therefore be redefined as

ζ1 = ζ4τ (3.38)

without any loss of generality. Substituting this ζ1 expression into (3.36) gives a solution

for ω:

ω = 4ζ3ζ4 + δ2ω1. (3.39)

Eq. (3.36) now becomes

∆ =
1

16
δ22τ4

[
− ζ4τ

5
(

6λ1 + ζ4τω1

)
− 2ζ3

4τ
3
(
τψ4 + 12ζ3λ1 + 2ζ3ζ4τω1

)
δ2

− ζ4τ
(

4ζ3ζ4τψ4 − 18λ2
1τ + ζ2

4τ
3ω2

1 + 4ζ2
3ζ4(6λ1 + ζ4τω1)

)
δ4

+
(
f5ζ

2
4τ

4 − ζ4τ
2ω1(ψ4 + 2ζ3ζ4ω1) + 6λ1(6ζ3λ1 + τψ4)

)
δ6

+ τ
(
g7τ +

1

4
ω2

1(6λ1 − ζ4τω1)
)
δ8 +O(τ2δ8)

]
σ7 +O(σ8).
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Degree of Freedom Line Bundle Order on +n curve Associated Matter

δ L′ r + +

τ −K +N − 5L′ n+ 2− 5r

ζ3 −2K +N − 6L′ n+ 4− 6r —

ζ4 −N + 6L′ −n+ 6r —

ω1 −2K − 2L′ 4− 2r —

λ2 −2K −N + 2L′ −n+ 4 + 2r —

φ4 −4K − 6L′ 8− 6r —

ψ5 −4K −N − 2L′ −n+ 8− 2r —

Table 5. Degrees of freedom in SU(8) Weierstrass model, excluding untuned fk and gk. Note that

r and n must satisfy n+ 2 ≥ 5r

Only standard redefinitions are needed from this point forward to get ∆ in a form to solve

for g7:

λ1 = −1

6
ζ4ω1τ + δ2τλ2, (3.40)

ψ4 = −3ζ4λ2τ
2 − 1

4
δ2ω2

1 − 6ζ3λ2δ
2 + φ4δ

4, (3.41)

f5 = 2ζ4φ4 + ψ5δ
2. (3.42)

Finally, we solve for g7:

g7 =
1

12

(
16ζ3ζ

2
4φ4 − 12ζ2

4τ
2ψ5 − 16δ2ζ4(ζ3ψ5 − φ4ω1)

− 4δ4(18λ2φ4 + ψ5ω1)− 2δ4f6(2ζ3δ
2 + 3ζ4τ

2)− f7δ
10τ2

)
.

(3.43)

For the sake of brevity, we do not rewrite the full f and g here.

The free polynomials for this SU(8) model are shown in table 5. When τ = 0, the

singularity type enhances from A7 to D8, so each zero of τ contributes a full multiplet in

the (28) representation. Meanwhile, the discriminant takes the form

∆ = δ12τ4
( 3

16
ζ8

4τ
8 +O(δ2)

)
σ8 +O(σ9). (3.44)

The factor in parentheses represents the discriminant locus where the singularity is en-

hanced to A8. This discriminant locus is a section of O(−8K+ 8L) and is of order 16 + 8r.

There are therefore 16 + 8r full multiplets in the fundamental (8) representation com-

ing from the divisor locus. On the zeroes of δ, the singularity type enhances to E8. As

mentioned in [5], if the A7 singularity structure is embedded in the standard E8 Dynkin

diagram, each zero of δ contributes one multiplet, one multiplet, and one multi-

plet. In principle, the A7 singularity structure could also be embedded in the extended
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Representation Multiplicity (in full multiplets)

(56) r

(28) n+ 2− 4r

(8) 16 + 9r

Table 6. Matter content of the SU(8) F-theory model. Note that n + 2 ≥ 5r. The SU(8) model

we have constructed does not seem to give all of the possible spectra listed in equation (2.16).

E8 Dynkin diagram in a different fashion, to give a half-multiplet in the representation

and two full-multiplets in the representation. In this non-standard embedding, one of

the roots of the A7 is mapped to the “extra” root of the affine Ê8. Either possibility is

consistent with gauge anomaly cancellation conditions. Here, in the specific tunings we

have identified, the A7 is enhanced to an E8 singularity, which we assume gives the most

generic matter content, in the 56, 28, and 8 representations. The resulting charged matter

content is summarized in table 6.

To find the number of neutral multiplets, we again count the number of complex degrees

of freedom in the Weierstrass model and subtract any redundant degrees of freedom. As

with the SU(7) model, the f and g expressions for the SU(8) tuning are invariant under

the following transformations in the polynomials:

ζ3 → ζ ′3 = ζ3 + τ2ε,

ζ4 → ζ ′4 = ζ4 −
2

3
δ2ε,

ω1 → ω′1 = ω1 +
8

3
ζ3ε+

4

3
τ2ε2,

λ2 → λ′2 = λ2 −
18

81
ω1ε−

24

81
ζ3ε

2 − 8

81
τ2ε3,

ψ5 → ψ′5 = ψ5 +
4

3
φ4ε.

(3.45)

In these transformations ε is a section of O(−N + 4L′), so there are −n+ 4r+ 1 redundant

degrees of freedom. After taking the transformations into account, the number of neutral

hypermultiplets agrees with anomaly conditions only when δ gives , , and multiplets.

This gives concrete evidence that the generic charged matter content of table 6 is correct

for this form of E8 singularity.

The tuning presented here does not seem to give matter in the (70) representation.

As discussed earlier, the supergravity models with (70) matter seem to be consistent with

the anomaly conditions, posing the question of whether these models have valid F-theory

realizations. At this point, it is unclear if there is some F-theory constraint that forbids the

Λ4 models or if the tuning presented here can be extended to give 4-index antisymmetric

matter. We will return to this issue in later sections.
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There are also certain supergravity SU(8) models with matter that are not allowed

in our F-theory construction. Equation (3.33) requires that −K + N − 5L′ be effective;

for the +n curve, n + 2 ≥ 5r. The F-theory SU(8) models with r > 0 56 multiplets

therefore have at least one multiplet, even though models without multiplets can still

be consistent with anomaly cancellation conditions. For instance, a model on a +2 curve

with 1 56 multiplet and 25 8 multiplets is anomaly-free but cannot be realized in our F-

theory constructions. This represents another potentially interesting point of disagreement

between the low-energy anomaly analysis and what can be realized in F-theory. The

restriction also implies that only some of the SU(7) models can be enhanced to SU(8). In

particular, an SU(7) model cannot be enhanced unless it has at least two 21 multiplets

for every 35 multiplet. These restrictions on enhancement are also consistent with what

can be observed for models from a heterotic perspective (see, for example, table 24 in

appendix D.1.2).

3.2.4 SU(9)

The SU(8) discriminant takes the form

∆ =
δ12τ4

192

(
36ζ8

4τ
8 +O(δ2)

)
σ8 +O(σ9) (3.46)

To tune an SU(9) singularity, ∆ must vanish to order σ9, which would require ζ8
4τ

8 to

be proportional to δ2. But from the SU(8) tuning, δ cannot share factors with either τ

or ζ4 without introducing superconformal points where f and g vanish to order 4 and 6.

The only way to tune an SU(9) gauge symmetry seems to be to have δ be a constant. If

one proceeds with constant δ, the resulting SU(9) models have only , fundamental, and

singlet matter.

The SU(9) tuning presents a similar challenge as the SU(8) models. From the anomaly

conditions, there appear to be consistent SU(9) supergravity models with matter. Yet

our tunings seem to forbid F-theory constructions of these models if one wishes to avoid

superconformal points. Both situations also require the gauge group Dynkin diagram to be

embedded in an extended Dynkin diagram. For instance, the Λ3 representation of SU(9)

comes from the enhancement A8 → Ê8. We will further discuss these missing cases later.

Note that in [24], it is argued that all SU(N) models except those with N = 6, 7, 8, 9 can

be put in Tate form, but that in these four cases there are non-Tate realizations. This

suggests that a more sophisticated F-theory construction may indeed realize SU(9) models

with exotic matter content, despite the analysis here.

3.2.5 SU(10)

There is no clear way in which a Λ3 representation of SU(10) could be realized in F-theory,

since the Dynkin diagram for A9 does not embed in Ê8. So there is no way to enhance the

Kodaira A9 singularity to an exceptional singularity that might carry exotic matter. Put

differently, SU(10) is a rank 9 group and cannot possibly be a subgroup of E8. The impos-

sibility of realizing theories with SU(10) or higher gauge groups and Λ3 representations in
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F-theory matches nicely with the low-energy theory where such models are essentially ruled

out by anomaly cancellation. One puzzle here, however, is that the low-energy condition

ruling out these models seems to rely on the pure gravitational anomaly cancellation con-

dition, while the F-theory obstacle seems to arise from purely local considerations. Note

that the absence of SU(10) models with Λ3 representations is also consistent with the

results of [24].

3.3 Realization of the transitions

The free polynomials for SU(6), SU(7), and SU(8) models have ambiguous divisor classes,

as parametrized by the divisors L and L′. One can imagine a process where L or L′ is

allowed to change while keeping the gauge group and codimension one singularity structure

fixed. The matter content will change as a result; in SU(6), for instance, parameters such

as α and β that control the number of antisymmetric multiplets will have different classes

if L changes. In fact, these transformations are the F-theory realization of the transitions

described previously in the supergravity context.

As an example, consider the SU(6) model on a +n curve. Different values of r

parametrize the space of models with different L. There is a process by which we can

transition between two models with different r. First, let α, ν, and λ develop a common

factor a:

α→ aα′,

ν → aν ′, (3.47)

λ→ aλ′.

This can be done in particular by following a continuous family of models parameterized by

a variable ε̂ > 0, with the factorization occurring as ε̂→ 0. At this point in the transition,

f and g vanish to orders 4 and 6 wherever a = σ = 0, indicating that a is a superconformal

point. Then, we can regroup a into β and φ2:

aβ → β′, (3.48)

aφ2 → φ′2.

Note that regrouping this factor does not involve any change in the Weierstrass model,

it is simply a new labeling of the factors in the Weierstrass model that leaves the indi-

vidual terms in f, g such as α4β4 unchanged, since e.g. αβ = aα′β = α′β′. When a is

regrouped in this way, the new β′ and φ′2 share a common factor, while the theory is still

at the superconformal point. But β′ and φ′2 are free parameters that can now be varied

to remove the common factor. A complex structure deformation that “absorbs” a into

β′ (i.e. deforms this coefficient so that it no longer factors) can be realized for example

by following a continuous family of models parameterized by the variable ε̂ < 0, with the

superconformal point at ε̂ = 0. Once the common factor is removed, the model no longer

has a superconformal point, and the transition is complete. If a is a polynomial of degree

1, then r has increased by 1 during this transition. The process can be reversed as well so
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that r decreases by one; we simply let β and φ2 develop a common factor and absorb the

factor into α, ν and λ. We thus see that the transition process can be physically realized by

a one-parameter family of Weierstrass models, with a superconformal field theory at ε̂ = 0

and theories with SU(6) gauge group and two distinct matter contents for ε̂ > 0 and ε̂ < 0.

The one-parameter nature of the transition can be seen more directly by writing ex-

pressions for the parameters in terms of ε̂. To illustrate the first step in the transition,

where α, ν and λ obtain common factors, we could write

α =

{
aα′ + α′′ε̂ ε̂ > 0

α′ ε̂ ≤ 0
, (3.49)

with similar expressions for ν and λ. Such expressions show that the factorization step of

equation (3.47) involves moving along a path of models parameterized by ε̂. Likewise, we

could describe the side as ε̂ approaches zero from a negative value by defining β′ as

β′ =

{
β ε̂ > 0

aβ + β′′ε̂ ε̂ ≤ 0
. (3.50)

As expected, equations (3.49) and (3.50) both lead to a common superconformal point

when ε̂ is taken to 0. With these expressions, the change in multiplicities can be seen

directly. Consider the term β2ν2σ2 in equation (3.16); it vanishes on the loci but not on

the loci and, along with σ3 terms in g, distinguishes between the two matter possibilities.

From the ε̂ expressions, the β2ν2σ2 term could be written as(
aβν ′ + ε̂βν ′′Θ(ε̂) + ε̂β′′ν ′Θ(−ε̂)

)2
σ2 (3.51)

where

Θ(ε̂) =

{
1 ε̂ > 0

0 ε̂ ≤ 0
. (3.52)

Notice that this term vanishes on the locus aβ+ε̂β′′ = σ = 0 locus for ε̂ < 0 but only on the

smaller locus β = σ = 0 when ε̂ > 0, indicating that the number of multiplets has changed

during the transition. Other terms in f and g can be shown to have similar behavior,

although for brevity we will not write out the full f and g in terms of ε̂. Nevertheless,

the transition can be explicitly described as a single-parameter path through a family of

models. It should be noted that in the resolved geometry associated to the two sides of the

transition we would see that two smooth CY 3-folds with distinct topology could be tuned

in their complex structure moduli spaces (i.e., three-cycles collapsed) to share a common

singular locus (involving the superconformal point). We will return to the notion of these

matter transitions as topology changing transitions in later sections when they are realized

in the dual heterotic theories.

We can track the matter participating in the transition through each of these steps.

When α, ν, and λ lose a factor of a, one multiplet is lost because of the change in the

order of α. Three of the complex degrees of freedom in α, ν and λ are traded for one degree

of freedom in a, so two neutral multiplets are lost. Finally, the number of fundamentals

– 26 –



J
H
E
P
0
4
(
2
0
1
6
)
0
8
0

is determined by the discriminant. Prior to the appearance of the shared factor, ∆ takes

the form

∆ = α4β3∆6σ
6 +O(σ7), (3.53)

where the order of ∆6 corresponds to the number of fundamental multiplets in the model.

At the transition point, this expression becomes

∆ = a6α4β3∆′6σ
6 +O(σ7). (3.54)

Two of the factors of a have come from ∆6, indicating that moving to the transition

point causes two multiplets to disappear. The first step in the transition can therefore

be thought of as one multiplet, two multiplets, and two singlets combining to form

superconformal matter represented by a. Importantly, there are total of 29 multiplets

participating in the transition, reminiscent of the appearance of an extra tensor multiplet

in the tensionless string transitions. Thus, if we imagine going off onto the tensor branch

of the theory by blowing up at the superconformal (4, 6) point, all the matter fields at that

point would be absorbed in the associated transition.

When a is subsequently reabsorbed into β and φ2, a new 1
2 multiplet comes from the

now enlarged β. The single degree of freedom in a is traded for two new degrees of freedom

in β and φ2, signaling the appearance of a new singlet. And as the discriminant returns to

its previous form, three factors of a are absorbed into β, while the remaining three factors

are absorbed into ∆′6. Three fundamentals have therefore appeared in the reabsorption

step. The transition can be summarized as

+ 2× + 2× 1→ Superconformal Matter→ 1

2
+ 3× + 1. (3.55)

The net change in matter content is

+ 1→ 1

2
+ , (3.56)

in exact agreement with the expected transition from supergravity. Note that the total

number of multiplets is the same before and after the transition.

The SU(7) transition happens in a similar fashion. First, ξ, ζ2, λ1, and ψ4 develop

common factors:

ξ → a3ξ′

ζ2 → a4ζ ′2

λ1 → aλ′1

ψ4 → a2ψ′4.

a is once again a superconformal point where (f, g) vanish to order (4, 6). The common

factor is then absorbed into δ and ζ1:

aδ → δ′

aζ1 → ζ ′1.
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We can once again track the matter in the transitions through a procedure similar to that

of the SU(6) transition, although we will only summarize the results here. To produce a

in the first step, 3 multiplets, 3 fundamentals, and 8 singlets disappear. Note that the

redundant degrees of freedom need to be considered when counting singlets. a subsequently

breaks into a multiplet, 8 fundamentals, and one singlet. The SU(7) transition is therefore

3× + 3× + 8× 1→ Superconformal Matter→ + 8× + 1, (3.57)

with a net change in matter content of

3× + 7× 1→ + 5× . (3.58)

The net matter change agrees exactly with the supergravity expectations. Just as with

SU(6), the transition can occur in reverse as well.

A total of 92 multiplets participate in the transition, which is not a multiple of 29.

While the transition does not explicitly require a blowup on the base, the general wisdom of

superconformal points and tensionless string transitions would suggest that the multiplets

in the transition should somehow fit into new tensor multiplets. To see the source of the

mismatch, we can move to the transition point and resolve a using blow-ups on the base.

The blow-ups are performed using the procedure of [2], but we will not go through the

details of the blow-up process here. In the end, a total of three blow-ups are required

to resolve a, leading to a situation illustrated in figure 1. One of the three exceptional

curves carries an I2 singularity, signaling the presence of a new SU(2) gauge algebra with

4 fundamentals. From anomaly considerations, the change in matter content due to the

blowups should satisfy

δnH − δnV = −29δnT . (3.59)

87 multiplets are traded for the three tensor multiplets, while a net of 5 multiplets are

needed to create the 4 fundamentals and 3 vector multiplets of the SU(2) gauge algebra.

This adds up to a total of 92 multiplets, in exact agreement with (3.57). In the limit

where the new exceptional curves shrink to zero size, any gauge groups on the exceptional

divisors become strongly coupled. Hence, the transition point a for SU(7) should involve

a superconformal field theory with three tensor multiplets and a strongly coupled SU(2)

gauge symmetry.

Finally, we turn to the SU(8) transition. To convert matter to matter, we first let

the following parameters obtain common factors:

τ → a5τ,

ζ3 → a6ζ3,

ω1 → a2ω1,

φ4 → a6φ4.

ψ5 → a2ψ5.

– 28 –



J
H
E
P
0
4
(
2
0
1
6
)
0
8
0

S̃
I7

S

�
�
�
�
�
��

−1

�
�
�
�
�
�
�

−2I2

A
A
A
A
A
AA

−1
C
C
C
C
C
C
C

−2I1

Figure 1. SU(7) transition point when blown up. Here, the compactification base was taken to be

Fn, while the original SU(7) gauge group was tuned on S̃. The blow-up procedure introduces three

exceptional curves shown in red, one of which has an I2 singularity. The I2 singularity indicates

there is a strongly coupled SU(2) at the transition point.

5 multiplets, 10 fundamentals, and 24 singlets disappear to form a. a is once again a

superconformal point, but (f, g) vanish to orders (6, 8). a is then reabsorbed into δ, ζ4,

and λ2:

aδ → δ

a6ζ4 → ζ4

a2λ2 → λ2.

Once δ, ζ4, and λ2 are allowed to vary independently, a breaks into a multiplet, a

multiplet, 19 fundamentals, and 8 singlets. The complete transition is therefore

5× + 10× + 24× 1→ Superconformal Matter→ + + 19× + 8× 1, (3.60)

with a corresponding net matter change of

4× + 16× 1→ + 9× . (3.61)

At the transition point, however, the codimension two singularity at a = σ = 0 does not

seem to be resolvable even with blowups on the base. If one tries to perform the resolution,

there will be a codimension one singularity along one of the exceptional curves where f

and g vanish to orders 4 and 6. This result suggests that the SU(8) transition may not

be valid. However, it is unclear whether our SU(8) tuning is completely general, and a

different tuning may admit a resolvable transition point. We leave the question of whether

the SU(8) transition is valid for future work.
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But the SU(6) and SU(7) transitions do seem to be valid. The analysis here does not

give a full description of the mechanism behind these transitions. Superconformal points

seem to be key to the actual transition. Importantly, it does not seem necessary to have a

strongly coupled gauge group associated with the superconformal point. While the SU(7)

transition does include a strongly coupled SU(2), the SU(6) transition seems to not require

any additional gauge group. A better understanding of the superconformal points could

perhaps lead to a more complete picture of the transition mechanism.

3.4 Higgsing processes in F-theory

Here, we examine how the SU(6)-SU(8) F-theory models fit into the Higgsing structure

discussed earlier in the supergravity context. In F-theory, Higgs transitions occur when

the coefficients in the Weierstrass model are deformed from particular values, breaking a

gauge symmetry in the process. Such deformations were recently explored in [33, 44]. We

discuss the F-theory deformations that represent Higgsing processes where fundamental,

, and multiplets obtain VEVs. We also examine how Higgsing affects the SU(6)−SU(8)

matter transitions. In particular, some the Higgsed models will have transitions where the

product-group representations change, as discussed previously in the supergravity section.

There will often be several parameters in the Weierstrass model that can be deformed to

give the same Higgsing process. We can therefore associate each Higgsing process with a set

of deformations, with each deformation corresponding to a particular degree of freedom in

the Weierstrass model. Suppose that the number of deformations for a particular Higgsing

process is nD. From anomaly cancellation, we know that nH − nV stays unchanged in

the Higgsing process. This corresponds to the fact that ∆nV of Goldstone bosons are

eaten by the gauge field, so from a ∆nV + 1 dimensional space of deformations related by

gauge symmetry, only one remains as a deformation. The remaining nD − 1 deformation

directions arise when originally charged fields become singlets after the reduction in gauge

group. In the cases considered here, this seems to occur in a similar way with a simple

characterization. From the field theory perspective, Higgsing occurs when a certain number

of multiplets in a particular representation R obtain expectation values. Let us say that

the unHiggsed model has nR multiplets in this representation and that nvev of them need

to obtain expectation values. For the Higgsing processes we consider in this paper, the

number of deformations nD seems to be related to nR:

nD = nR − nvev + 1. (3.62)

Most of the Higgsing processes we examine will involve two multiplets obtaining VEVs, so

that nvev = 2. In these cases, we will find that there is one fewer deformation than the

number of multiplets that can obtain VEVs. For most of the Higgsing processes in this

paper, this holds since each singlet in the Higgsed model arises from a single non-Higgsed

field in the representation R. But it is unclear if (3.62) should hold more generally, and

we do not present a more general proof of this conjecture here.
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3.4.1 Higgsing on fundamental matter

As described earlier, an SU(N) symmetry can be broken to SU(N − 1) by giving VEVs to

two fundamental multiplets. Because the tuning process of section 3.2 proceeds through

each SU(N) algebra sequentially, the Higgsing deformations can be read off directly from

the individual tuning steps.

The SU(6) model can be Higgsed to SU(5) through a set of possible deformations

contained in φ̃1,ψ̃2,f̃3, and g̃5:

φ1 = (β + φ̃1)ν (3.63)

ψ2 = −1

3
(α+ ψ̃2)φ2 (3.64)

f3 = −1

3
νφ2 − 3(β + f̃3)λ (3.65)

g5 = − 1

12
α2β2 − 1

3
f4βν + λφ2 + g̃5. (3.66)

Each of the parameters in the four polynomials is an independent deformation that can

be adjusted separately; as long as at least one parameter is non-zero, the SU(6) gauge

symmetry will be Higgsed to SU(5). φ̃1 and f̃3 are sections of O(L), ψ̃2 is a section of

O(−K + N − L), and g̃5 is a section of O(−6K + N). When the SU(6) is tuned on a

+n curve, there are a combined 2n + 15 + r complex degrees of freedom, one fewer than

the number of fundamental multiplets in the SU(6) model. This fits with the expectation

that (3.62) is satisfied for the SU(6) → SU(5) Higgsing process. Note that in 4D, this set

of deformations is not in general complete since, for example, quantities such as φ1 and ψ2

need not factorize.

From the branching patterns, all of the possible SU(6) models on a +n curve should

give the same SU(5) charged matter content when Higgsed. To see whether this is true in

F-theory, we can plug (3.63)–(3.66) into the SU(5) model of (3.7) and (3.8) (while setting

φ0 = αβ) and examine the resulting matter. We can consider a maximally-deformed model

in which all of the deformations are turned on. In this case, f and g vanish to orders 2 and

3 when either α = σ = 0 or when β = σ = 0, so both α and β will give 10 matter in the

resulting SU(5) model. The discriminant meanwhile takes the form

∆ = α4β4∆5σ
5 +O(σ6). (3.67)

The SU(5) model thus has a total of n+2 10 multiplets and 3n+16 fundamental multiplets

regardless of the initial SU(6) model, indicating all of the SU(6) models have Higgsed to the

same SU(5) model. If some of the deformations are turned off, the resulting SU(5) model

may have codimension-two loci with rank-two singularity enhancements. These loci may

contribute more than one multiplet of charged matter, making the analysis more involved.

While we do not go through all of the possible situations, all of these specialized situations

should give the same charged matter content.

The SU(7) → SU(6) Higgsing pattern has a more interesting structure, as a given

SU(7) model can Higgs only to a particular SU(6) model. Moreover, only a subset of the
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SU(6) models can be reached by Higgsing an SU(7) model, as discussed previously. In

F-theory, the corresponding deformations are

β = (δ + β̃)δ, (3.68)

α = (δ + α̃)ξ, (3.69)

φ2 = 3ζ2
1 + (δ2 + φ̃2)ω, (3.70)

λ =
1

3
ζ2

1ζ2 −
1

18
ζ1ξ +

1

9
δ2ζ2ω + (ξδ2 + λ̃)λ1, (3.71)

f4 = −6ζ1λ1 −
1

12
ω2 + (δ2 + f̃4)ψ4, (3.72)

along with a deformation of g6 by adding g̃6 to (3.28). The resulting set of deformations

has n+ 16 + 5r complex degrees of freedom, one fewer than the number of 7 multiplets for

SU(7). Note that there is no deformation associated with the ν redefinition (3.24). The ν

redefinition does not seem to remove degrees of freedom like the other tuning steps; instead,

the step simply reorganizes ν to have a particular structure. A ν deformation could be

included, but we would then need to account for the redundant degrees of freedom described

earlier in the counting. Once the redundant degrees of freedom are subtracted off, the total

number of deformations is the same as before. We therefore do not include a ν deformation

in the above set of deformations.

ξ will give 15 matter in the SU(6) model, as (f, g) vanish to orders (2, 3) on ξ = σ = 0

regardless of which deformations are turned on. When considering the maximally deformed

situation, the loci where δ + α̃ = σ = 0 also contribute 15 matter. Finally, the singularity

type enhances to an incompletely resolved E6 when δ = σ = 0 or when δ + β̃ = σ = 0,

giving 1
220 matter. In total, the resulting SU(6) model has 2r 1

220 multiplets, n+ 2− 2r

15 multiplets, and 16+2n+2r fundamentals, so each SU(7) model is Higgsed to the SU(6)

model with r6 = 2r7.

Higgsing relates the SU(6) and SU(7) transitions in a non-trivial way. Directly applying

the SU(7)→ SU(6) branching patterns to the SU(7) transition (2.10) would seem to imply

that the SU(6) theory undergoes minimal transitions of the form

20
( )

+ 2× 6 ( )↔ 2× 15
( )

+ 2× 1. (3.73)

However, equation (2.9) and the F-theory SU(6) model both suggest the minimal SU(6)

transition should involve half this amount of matter. This discrepancy reflects the fact

mentioned in sections 2.3.1 and 3.2.2 that only SU(6) models with an even number of
1
220 multiplets can be unHiggsed to SU(7). Applying the transition (2.9) only once could

produce an SU(6) spectrum with an odd number 1
220 multiplets that cannot be unHiggsed

to SU(7). Thus, (2.9) should not be directly visible from the SU(7) model. Instead, (2.9)

must be applied twice to move between two SU(6) vacua that can be enhanced to SU(7),

as reflected in 3.73. Said differently, the smallest SU(7) transition changes r7 by 1, which

becomes a ∆r6 = 2 change in the resulting SU(6) model. The heterotic analogue of this

phenomenon will be discussed in section 4.4.
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For the SU(8)→ SU(7) Higgsing process, the corresponding deformations are

ξ = (δ2 + ξ̃)τ, (3.74a)

ζ2 =
1

2
ζ4τ

2 + (δ2 + ζ̃2)ζ3, (3.74b)

ω = 4ζ3ζ4 + (δ2 + ω̃)ω1, (3.74c)

λ1 = −1

6
ζ4τω1 + (τδ2 + λ̃1)λ2, (3.74d)

ψ4 = −3ζ4λ2 −
1

4
ω2

1δ
2 − 6ζ3λ2δ

2 + (δ4 + ψ̃4)φ4, (3.74e)

f5 = 2ζ4φ4 + (δ2 + f̃5)ψ5, (3.74f)

along with a deformation of g7 by adding g̃7 to equation (3.43). This leads to a total

of 15 + 9r possible deformations, which is one fewer than the number of 8 multiplets.

Modifications to the ζ1 redefinition were not considered due to the redundant degrees of

freedom in the tuning. In the Higgsed model, there are two codimension two loci, τ = σ = 0

and δ2 + ξ̃ = σ = 0, where the singularity type enhances to D7; these loci give 21 matter.

Loci where δ = σ = 0 have an enhanced E7 singularity and contribute one 35 multiplet

and one 7 multiplet. The Higgsed model therefore has r 35 multiplets, n + 2 − 3r 21

multiplets, and n + 2 + 5r fundamental multiplets, indicating that each SU(8) model is

Higgsed to the SU(7) model with r7 = r8. Once again, the restriction that 5r ≤ n+ 2 for

SU(8) means that only some SU(7) models can be reached by Higgsing an SU(8) model.

3.4.2 Higgsing on two-index antisymmetric matter

From field theory, an SU(N) gauge symmetry can be broken to SU(N − 2) × SU(2) by

giving expectation values to two multiplets. For N = 4 and N = 5, such Higgsing

processes can be realized in F-theory by tuning an SU(N − 2) gauge symmetry on σ = 0

and tuning an SU(2) gauge symmetry on σ − ε = 0. Here, ε, like σ, is a section of the line

bundle O(D) on B. When considering a compactification base Fn with the coordinate σ

associated with S̃, ε will be a polynomial in the coordinate associated with F of order n; the

rest of the discussion in this F-theory Higgsing section will focus mostly on this particular

setup. Note that in this discussion we treat all the coefficients in the expansion of f, g as

sections of line bundles over B and do not pull them back to a given divisor. This may

be subtle in general circumstances of is clear in the toric context at least where all these

coefficients can be expanded in a local coordinate system. In the situation just described,

the discriminant will then be proportional to σN−2(σ−ε)2. In the limit where ε goes to zero,

the discriminant becomes proportional to σN , unHiggsing the gauge symmetry to SU(N).

ε therefore parametrizes the set of possible deformations corresponding to this Higgsing

process. Physically, the Higgsing process occurs by separating the stack of coincident branes

forming the SU(N) singularity into two distinct sets, with ε representing the separation

between the two new sets.

Identifying the deformations requires tuning singularities on σ = 0 and σ = ε simul-

taneously, which is difficult when f and g are expanded in σ alone. The tuning process is
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easier when f and g are expanded in σ(σ − ε). Specifically, we write

f = F0 + F1σ(σ − ε) + F2σ
2(σ − ε)2 + . . . (3.75)

g = G0 +G1σ(σ − ε) +G1σ
2(σ − ε)2 + . . . , (3.76)

where

Fi = f2i + f2i+1σ (3.77)

Gi = g2i + g2i+1σ. (3.78)

With this expansion, the SU(N−2) and SU(2) symmetries can be tuned through a process

similar to that of tuning SU(N) on σ. Some terms of the SU(N) tuning process will obtain

modifications proportional to ε when tuning SU(N − 2) × SU(2). These additional terms

represent the Higgsing deformations.

ε is the only free parameter in the SU(N − 2) × SU(2) not present in the unHiggsed

SU(N) model. As an order n polynomial, ε has n + 1 degrees of freedom, whereas the

unHiggsed SU(4) and SU(5) models both have n+ 2 multiplets. Once again, the number

of deformation parameters is one fewer than the number of matter multiplets that can

obtain VEVs for this Higgsing pattern. Since ε will be ineffective unless n ≥ 0, the

unHiggsed SU(4) or SU(5) model must have at least two multiplets. Moreover, the n

zeroes of ε are the only source of bifundamental matter in the SU(N − 2) × SU(2) model,

reflecting the fact that two bifundamental multiplets are eaten during Higgsing.

A similar story holds when Higgsing SU(6) to SU(4) × SU(2). As noted earlier, the

SU(4) × SU(2) model itself has a transition where the product-group representations are

allowed to change. Such transitions can be achieved in F-theory by having ε depend on

other parameters in the Weierstrass model. We tune SU(4) on σ = 0 and tune SU(2) on

σ − βε1 = 0. The overall tuning process is similar to that of SU(6), except that some of

the tuned parameters may obtain additional terms proportional to ε1. When ε1 is taken to

zero, we recover the general SU(6) model; ε1 therefore represents the set of deformations

corresponding to the Higgsing process. Note that ε1 is a polynomial of order n− r in our

standard Fn. There are n+ 2− r 15 multiplets in the SU(6) model, so we once again have

a number of deformations that is one fewer than the number of Higgsable multiplets. As

before, the original SU(6) model must have at least 2 15 multiplets for ε1 to be effective

and for the SU(6) to be Higgsable.

The zeroes of ε1 contribute bifundamental (4,2) matter, while the zeroes of α give

(6,1) matter. When β = 0, the singularity type enhances to D5, indicating every zero of β

contributes a half multiplet of (6,2) matter. The total matter content from the F-theory

model agrees exactly with the spectra derived from the SU(6) branching patterns. Once

again, the fact that ε1 is of order n−r indicates that two bifundamental multiplets are eaten

in the Higgsing process. The transition between product-group representations occurs in a
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similar fashion as the SU(6) transition. First, α, ε1, ν and λ obtain common factors:

α→ aα′,

ε1 → aε′1,

ν → aν ′,

λ→ aλ′.

The common factor a is once again a superconformal point; (f, g) vanish to order (4, 6) on

the locus a = σ = 0. a is then absorbed into β and φ2 as before:

aβ → β′,

aφ2 → φ′2.

The transition can be summarized as

(6,1)+(4,2)+2×(4,1)+2×(1,2)+3×(1,1)→ 1

2
×(6,2)+4×(4,1)+3×(1,2)+(1,1),

(3.79)

which is the Higgsed version of (3.55). Just as in the SU(6) transition, there are a total of

29 multiplets participating in the transition. The net change in matter content is

(6,1) + (4,2) + 2× (1,1)→ 1

2
× (6,2) + 2× (4,1) + (1,2), (3.80)

as expected from supergravity. The transition can be reversed as well by inverting the steps.

To realize the SU(7)→ SU(5)× SU(2) Higgsing process, we tune the SU(5) symmetry

on σ = 0 and the SU(2) symmetry on σ − δ3ε2 = 0. While β is still defined to be δ2, α is

redefined as

α = ξδ − ζ1ε2. (3.81)

The rest of the tuning process is similar to that of SU(7), but the parameter redefinitions

may have additional terms proportional to ε2. ε2 is of order n − 3r; again, there is one

fewer deformation parameter than the number of 21’s of SU(7). Taking the ε2 → 0 limit

gives the SU(7) tuning, and the zeroes ε2 therefore contribute bifundamental (5,2) matter.

(10,1) matter comes from the codimension two locus where ξδ − ζ1ε2 = σ = 0 with δ 6= 0,

so there are a total of n+ 2− 3r (10,1) multiplets. Finally, the singularity type enhances

to E6 on the δ = σ = 0 loci; each zero of δ therefore contributes a (10,2) multiplet and a

(5,1) multiplet. The resulting charged matter content agrees exactly with that from field

theory considerations.

The SU(5) × SU(2) model inherits the SU(7) transition. The steps in the transition

are the same as those for the SU(7) transition, only ε2 develops the common factor a along

with ξ, ζ2, λ1, and ψ4:

ε2 → a3ε′2. (3.82)

The complete transition is therefore

3× (10,1) + 3× (5,2) + 3× (5,1) + 3× (2,1) + 11× (1,1)

→ (10,2) + (10,1) + 9× (5,1) + 8× (1,2) + (1,1), (3.83)
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which is the Higgsed version of the SU(7) transition. The corresponding net change in

matter content is

2× (10,1) + 3× (5,2) + 10× (1,1)→ (10,2) + 6× (5,1) + 5× (1,2). (3.84)

For SU(8)→ SU(6)×SU(2), we enhance the symmetry tuned on σ = 0 to SU(6) while

having the SU(2) occur on σ − δ4ε3 = 0. ξ is redefined to be

ξ = δ2 − ζ1ε3, (3.85)

while some of the other SU(8) parameter redefinitions get additional terms proportional to

ε3. ε3 contains the set of deformations corresponding to the Higgsing process, and taking

ε3 to zero recovers the SU(8) model.

ε3 contributes bifundamental (6,2) matter, and τ gives (15,1) matter. When δ = σ =

0, the singularity type enhances to E7, so each zero of δ gives a (15,2) multiplet, a (15,1)

multiplet, and a (1,2) multiplet. Finally, the singularity type enhances to E6 on the locus

δ2 − 2ε3ζ4, contributing r (20,1) multiplets. There does not seem to be a locus that gives

(20,2) matter, which can only come from matter in the SU(8) model. This is further

evidence that our SU(8) tuning does not have 4-index antisymmetric matter.

The SU(6) × SU(2) model has a transition similar to the SU(8) transition. The only

difference is that ε3 participates in the first step along with τ , shedding four factors of a:

ε3 → a4ε3. (3.86)

In terms of the matter content, the transition is

5× (15,1) + 4× (6,2) + 10× (6,1) + 10× (1,2) + 28× (1,1)

→ (20,1) + (15,2) + (15,1) + 20× (6,1) + 19× (1,2) + 8× (1,1). (3.87)

This is not the Higgsed version of the SU(8) transition, as there is a missing (6,2) multiplet

in the transition. However, just as with the SU(8) transition, the transition point does not

seem to be resolvable even with blow-ups on the base.

3.4.3 Higgsing on three-index antisymmetric matter

We can find deformations for the SU(N) → SU(N − 3) × SU(3) Higgsing process using

a similar strategy; we tune an SU(N − 3) symmetry on σ = 0 and an SU(3) symmetry

on σ − ε = 0. As in the Higgsing process, ε will take particular forms when breaking

SU(6) through SU(8) in order to accommodate the matter transitions. Because the

representation appears only at SU(6) and above, the Higgsing processes will exclusively

involve situations where ε has a specialized form.

To find the deformations that break SU(6) to SU(3)×SU(3), we tune one SU(3) algebra

on σ = 0 and the other on σ − αε1 = 0. ε1 is a polynomial of order r − 2. Performing this

tuning requires a modified redefinition of φ0:

φ0 = αβ − ε1ν.

– 36 –



J
H
E
P
0
4
(
2
0
1
6
)
0
8
0

With this redefinition, the split condition is satisfied for both of the codimension-one sin-

gularities. The other steps of this tuning are similar to those of the SU(6) tuning, but

some parameter redefinitions may involve additional terms proportional to ε1. The new

terms dependent on ε1 are the Higgsing deformations, and ε1 thus parametrizes the pos-

sible deformations. As expected, there is one fewer deformation than the number of 1
220

multiplets in the SU(6) model. Moreover, there must be at least two 1
220 multiplets for ε1

to be effective and for the deformations to be possible.

α and ε1 both contribute bifundamental matter in the SU(3) × SU(3) model, while β

does not contribute any matter. However, there are two ways to form bifundamental matter

in the SU(3) × SU(3) model, as described in [5]; in half-hypermultiplets, bifundamental

matter can be in the form (3, 3̄) + (3̄,3) or in the form (3,3) + (3̄, 3̄) . From the field

theory perspective, (3, 3̄) + (3̄,3) matter should come from the 1
220 multiplets of the

SU(6) model, whereas the (3,3) + (3̄, 3̄) matter should come from the 15 multiplets. For

this reason, ε1, which represents bifundamentals originating from 10 matter, should give

(3, 3̄) + (3, 3̄) bifundamental matter (which we will refer to as a (3, 3̄) full multiplet). α

meanwhile should contribute (3,3) + (3̄, 3̄) matter (or a full (3,3) multiplet). These two

realizations are physically indistinguishable in the SU(3)×SU(3) model, so the distinction

is somewhat arbitrary. However, similar types of distinctions will be important in tunings

considered later.

The SU(3) × SU(3) model has a transition, although the transition does not have as

interesting of a change in the representations. α, ν, and λ obtain a common factor a just

as in the SU(6) transition, while β, φ2 and ε1 each absorb one factor of a. a is once again

a superconformal point. The transition is therefore

(3,3)+3×(3,1)+3×(1,3)+2×(1,1)→ (3, 3̄)+3×(3,1)+3×(1,3)+2×(1,1), (3.88)

which is the Higgsed version of the SU(6) transition. The only net effect of this transition

is to exchange the (3,3) and (3, 3̄) representations. Since the two bifundamental repre-

sentations are essentially equivalent, the transition may not seem to be as interesting as

the other transitions. Nevertheless, the structure of the transition is the same as that of

the other transitions, and the SU(3) × SU(3) transition will be important when analyzing

transitions in other models.

Enhancing the SU(3) algebra on σ to SU(4) allows us to find the SU(7)→ SU(4)×SU(3)

Higgsing deformations. The SU(3) singularity, which was previously on σ − αε1 = 0, now

occurs on the locus σ − ξδ2ε2 = 0. β is no longer forced to be a perfect square, as it is

redefined as

β = δ2 + ε2ζ1. (3.89)

The rest of the SU(4) × SU(3) tuning process is similar to that of SU(7), except that the

φ2 and g6 redefinitions of equations (3.25) and (3.28) obtain additional terms proportional

to ε2. ε2, a polynomial of order r − 2, parametrizes the set of deformations.

There is a matter-changing transition in this SU(4) × SU(3) model. The steps in the

transition are nearly identical to the SU(7) transition, only ε2 absorbs a single factor of

a along with δ and ζ1. Both ε2 and ξ contribute bifundamentals, while each zero of δ
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gives a (6,3) multiplet and a (1,3). On the locus ξ − ε2ζ2 = σ = 0, the singularity type

enhances to D4×A2, giving (6,1) matter. Including fundamentals and singlets, the matter

transition is

3× (6,1) + 3× (4,3) + 3× (4,1) + 6× (1,3) + 8× (1,1)

→ (6,3) + (4,3) + 9× (4,1) + 8× (1,3) + 2× (1,1), (3.90)

leading to a net matter change of

3× (6,1) + 2× (4,3) + 6× (1,1)→ (6,3) + 6× (4,1) + 2× (1,3). (3.91)

This transition is the Higgsed version of the SU(7) transition.

For the SU(8) → SU(5) × SU(3) Higgsing process, we tune the SU(5) symmetry on

σ and the SU(3) symmetry on σ − δ4τε3. While we are able to find an explicit F-theory

realization of this Higgsing process, there are tight constraints on the possible SU(8) models

that can be Higgsed on 56 matter. For ε3 to be effective and for this Higgsing process to

be possible, the original SU(8) model must have at least 2 56 multiplets. From anomaly

cancellations alone, this requires n ≥ 6; our F-theory tunings support two 56 multiplets

only when n ≥ 8. All of these models oversaturate the gravitational anomaly bound on

their own, and it is necessary to include a second gauge symmetry. For instance, when

the singularity is tuned on S̃ with compactification base Fn, a non-Higgsable cluster on

S can allow the global model to satisfy the gravitational anomaly bound. In F-theory,

we are able to find the deformations for SU(8) models on S̃ with explicit tunings given

earlier. These models have n ≥ 8 and only two 56 multiplets. The resulting SU(5) ×
SU(3) matter spectrum agrees exactly with that expected from the branching patterns.

However, we cannot realize SU(8) models with more than three 56 multiplets on S̃ using

our constructions, as our F-theory tunings will not support three 56 multiplets for n ≤ 12.

We therefore cannot see SU(5) × SU(3) transitions in the S̃ tunings.

4 Heterotic description of matter transitions

In this section we describe the SU(N) theories with exotic matter, as well as the Higgsing

and small instanton transitions of interest in this paper in terms of the bundle geometry

on the heterotic side of the duality. We begin in the next subsection by considering the

construction of SU(N) theories where N = 6, 7, 8. In subsection 4.2 we describe the small

instanton transitions that are possible in such theories. Finally, in subsection 4.3, we

describe how the Higgsing processes are realized at the level of bundle geometry. Some of

the results presented here are, of course, not new and can be found in [14], for example.

We find it useful to present them again here, however, in the same language that we use

to describe previously unstudied cases.
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4.1 SU(N) theories in heterotic compactifications

4.1.1 SU(6)

The relevant group theory for studying a compactification of the E8 × E8 heterotic string

with an SU(6) gauge group in six dimensions is as follows.

E8 ⊃ SU(6)× SU(3)× SU(2) (4.1)

248 = (1,1,3)+(1,8,1)+(35,1,1)+(15,3,1)+(15,3,1)+(6,3,2)+(6,3,2)+(20,1,2)

From this we see that we need a bundle with structure group SU(3) × SU(2) to obtain an

unbroken gauge group of SU(6). We take the gauge bundle to be

V = V3 ⊕ V2 (4.2)

where V3 has structure group SU(3) and V2 has structure group SU(2).

The matter content resulting from a sum of vector bundles such as (4.2) can be com-

puted in terms of the first cohomology groups of combinations of those objects and their

wedge powers. This can either be seen in terms of dimensional reduction of gaugino de-

grees of freedom in ten dimensions to give fermionic matter [45], or in terms of dimensional

reduction of bosonic degrees of freedom. The bosonic components of the low-energy theory

all descend from adjoint valued gauge fields in ten dimensions. We consider first cohomolo-

gies because these are associated with one forms - which can be used to account for the

space-time index of the gauge field leading to scalar degrees of freedom in six dimensions.

The particular combination of bundles that one considers is determined by the decomposi-

tion (4.1). For example, we can see from the final term in the second line of (4.1) that if we

want to obtain matter transforming in the 20 representation of SU(6), then the relevant

one forms in the dimensional reduction must carry an index in the fundamental of SU(2),

leading us to consider H1(V2).

The different first cohomology groups of interest can be computed, in the case of K3

compactifications, by using the Hirzebruch-Riemann-Roch theorem [46]. Using the fact

that bundles in a heterotic compactification are required to be slope stable, the statement

of this theorem can be reduced to the following formula for the dimension of the first

cohomology of a bundle F in such a situation.

−h1(F) =

∫
K3

ch(F) ∧
(

1 +
c2(K3)

12

)
(4.3)

Applying this formula to the bundles that are relevant given the decomposition (4.1) gives

rise to the results given in table 7.

In the SU(6) case we are considering, the numbers of vector and tensor multiplets

are nV = 35 and nT = 1 respectively. The number of half-hypermultiplets associated

to the other (“hidden sector”) E8 bundle is h1(End0VE8) = c2(End0VE8) − 496. We also

have an additional 20 hypermultiplets from the metric moduli of K3. This information,

together with the matter content given in table 7 can be substituted into the six-dimensional
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Representation Cohomology Multiplicity

15 H1(V∨3 ) c2(V3)− 6

15 H1(V3) c2(V3)− 6

6 H1(V3 ⊗ V2) 2c2(V3) + 3c2(V2)− 12

6 H1(V∨3 ⊗ V2) 2c2(V3) + 3c2(V2)− 12

20 H1(V2) c2(V2)− 4

1 H1(End0(V3))⊕H1(End0(V2)) (4c2(V2)− 6) + (6c2(V3)− 16)

Table 7. The cohomology and multiplicity associated to each representation of the low-energy

gauge group SU(6).

anomaly cancelation condition to give the following.

nH + 29nT − nV = 273 (4.4)

⇒ c2(V3) + c2(V2) +
1

60
c2(End0(VE8)) = 24 (4.5)

This is precisely the ten-dimensional anomaly cancelation condition as expected.

The matter content outlined in table 7 takes the form described in equation (2.14),

where we have

n = c2(V3) + c2(V2)− 12 and r = c2(V2)− 4 . (4.6)

4.1.2 SU(7)

The relevant group theory in this case is

E8 ⊃ SU(7)× SU(2)×U(1) (4.7)

248 = (1,1)0 + (1,3)0 + (7,2)9 + (7,2)−9 + (48,1)0 + (7,1)−12 + (21,2)−3 + (35,1)6

+(7,1)12 + (21,2)3 + (35,1)−6 . (4.8)

To obtain a bundle with structure group SU(2)×U(1) ∼= S(U(2)×U(1)) embedded inside

E8, we take the gauge bundle to be

V = V2 ⊕ L . (4.9)

Here V2 is a U(2) bundle, L is a line bundle and c1(V2) = −c1(L). The U(1) factor above

appears both in the structure group and also in its commutant inside E8. Naively, therefore,

one might expect this Abelian group to be unbroken. However, as is well documented in

this context [47–52], this U(1) gains a mass through the Green-Schwarz mechanism. In this

process the U(1) gauge boson is made massive and one entire hypermultiplet from the K3

metric moduli is removed from the low energy spectrum. One of the degrees of freedom in

the hypermultiplet is eaten by the gauge boson and the remaining three are made massive

by the triplet of D-terms of the six-dimensional N = 1 theory.

The matter content that results from the bundle (4.9) is given in table 8.
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Representation Cohomology Multiplicity

1 H1(End0(V2)) 4c2(V2)− c1(L)2 − 6

7 H1(V∨2 ⊗ L)⊕H1(L∨2) (c2(V2)− 5
2c1(L)2 − 4) + (−2c1(L)2 − 2)

7 H1(V2 ⊗ L∨)⊕H1(L2) (c2(V2)− 5
2c1(L)2 − 4) + (−2c1(L)2 − 2)

35 H1(L) −1
2c1(L)2 − 2

35 H1(L∨) −1
2c1(L)2 − 2

21 H1(V2) c2(V2)− 1
2c1(L)2 − 4

21 H1(V∨2 ) c2(V2)− 1
2c1(L)2 − 4

Table 8. The cohomology associated to each representation of the low-energy gauge group SU(7).

Following a similar procedure to that discussed in the SU(6) case, table (8) leads to

the following anomaly cancelation constraint

nH + 29nT − nV = 273 (4.10)

⇒ c2(V2)− 2c1(L)2 +
1

60
c2(End0(VE8)) = 24

Naively there is a mismatch in the second equation, which is corrected by including an addi-

tional vector multiplet, beyond those associated to SU(7), to account for the Green-Schwarz

massive U(1). Alternatively, considering the theory below the mass scale associated to the

Abelian factor, we can drop both the number of vectors and the number of metric moduli

hypermultiplets by one to account for the effects of the Higgs process described above.

The matter content outlined in table 8 takes the form described in equation (2.15)

where we have

n = c2(V2)− 2c1(L)2 − 12 and r = −1

2
c1(L)2 − 2 . (4.11)

4.1.3 SU(8) and beyond

The relevant group theory in this case is,

E8 ⊃ SU(8)×U(1) (4.12)

248 = 10 + 89 + 8−9 + 28−6 + 286 + 563 + 56−3 + 630 . (4.13)

To embed a bundle with U(1) = S(U(1) × U(1)) structure group inside E8 we write the

following.

V = L ⊕ L∨ (4.14)

Here L is a simple line bundle. Once again computing the spectrum we obtain the result

given in table 9.

Anomaly cancelation in this case is as follows.

nH + 29nT − nV = 273 (4.15)

⇒ −4c1(L)2 +
1

60
c2(End0(VE8)) = 24
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Representation Cohomology Multiplicity

8 H1(L3) −9
2c1(L)2 − 2

8 H1(L∨ 3) −9
2c1(L)2 − 2

28 H1(L∨ 2) −2c1(L)2 − 2

28 H1(L2) −2c1(L)2 − 2

56 H1(L) −1
2c1(L)2 − 2

56 H1(L∨) −1
2c1(L)2 − 2

Table 9. The cohomology associated to each representation of the low-energy gauge group SU(8).

Here, again, there is a massive U(1), which can be thought of as reducing the number of

massless metric moduli on the K3 by 1, so only 19 K3 moduli are included in the anomaly

matching condition.

The matter content given in table 9 takes the form described in equation (2.16) where

we have

n = −4c1(L)2 − 12 = 8r + 4 , r = −1

2
c1(L)2 − 2 and r′ = 0 (4.16)

Note that we get an extremely non-generic spectrum in this case from a six-dimensional

field theory point of view. The spectrum of the SU(8) charged matter in the heterotic

compactification is controlled by a single integer rather than by 3 as in (2.16). In fact, we

see from the expression for n in (4.16), together with the topological fact that c1(L)2 is

even on K3 for any L, that c1(L)2 ≤ −4. Studying equation (4.15), we see that the smallest

c1(L)2 can be is −6. Thus the two possibilities are n = 4 and n = 12. Neither of these

two possibilities leaves a large enough second Chern class available for the hidden sector

bundle to completely break the E8 in the other sector. We will have at minimum an SO(8)

and E8 “hidden” sector gauge group respectively in these two cases [20]. These match the

non-Higgsable clusters that one would expect in a dual compactification of F-theory on an

elliptic fibration over F4 and F12. As in the F-theory analysis of section 3.2.3, we obtain no

matter in the 70 representation of SU(8) in these perturbative heterotic compactifications.

The gauge group SU(8) is on the edge of what can be achieved perturbatively in

compactifications of the E8 × E8 heterotic string. SU(9) is a subgroup of E8 but its

commutant inside E8 is empty, meaning that it can not be achieved as the unbroken

commutant of some continuous bundle structure group (although it can be achieved on

singular K3 manifolds by using a Z3 structure group [53]). The groups SU(10) and higher

are simply not subgroups of E8 and thus can’t be achieved as gauge groups in the case

of perturbative compactifications. It is interesting that the non-genericity of spectrum

described in the proceeding paragraph arises in the boundary SU(N) case of the largest

possible N .
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4.2 Realization of the transitions

The matter transitions described from a field theory perspective in section 2, and from an

F-theory perspective in section 3.3 are also realized concretely in these heterotic compact-

ifications.

In the SU(6) case of section 4.1.1 we can utilize small instanton transitions to swap

second Chern class contributions between V3 and V2, subject to the overall constraint (4.5).

Note that we could also swap second Chern class with the “hidden sector” bundle but this

would lead to an intermediate stage involving an increase in the number of tensor multiplets.

Studying table 7, we see that lowering c2(V2) by 1 and raising c2(V3) by 1 causes the

number of 6 and 6’s to go down by a single unit and the number of 20’s also to lower by

1. Conversely we gain one 15, one 15 and two singlets. This is precisely a transition of

the form described in equation (2.9) from a field theory perspective and in equation (3.56)

in an F-theory context (it is important in making this comparison to realize that the

multiplicities given in tables such as table 7 count half-hypermultiplets).

In the SU(7) case of section 4.1.2, small instanton transitions within one E8 factor

swap contributions to c2(V2) with c1(L)2 in such a manner as to preserve equation (4.10).

Note that not only the second, but also the first Chern class of V2 changes under such a

transition.

We see from equation (4.10) that if we increase c1(L)2 by 21 in table 8 we must also

increase c2(V1) by 4. Studying table 8, we see that, under such a transition, the number

of 35 and 35 half hypermultiplets lowers by 1, the number of 7 and 7 half hypermultiplets

lowers by 5, the number of 21 and 21 half hypermultiplets increases by 3 and the number

of singlet half hypermultiplets increases by 14. This is precisely a transition of the form

described in equation (2.10) from a field theory perspective and in equation (3.58) in an

F-theory context.

The SU(8) case of section 4.1.3 mirrors what was found in an F-theory context in

section 3.3. No small instanton transitions purely in one E8 factor, giving rise to either of

the forms (2.11) or (2.12) seen in our field theory discussion, is possible, however, due to

the constraint given in equation (4.15). Small instanton transitions are of course possible if

one allows a modification of the second E8 bundle and it is also possible that more generic

results from a field theoretic point of view could be obtained on a singular K3, where

non-perturbative contributions to the gauge charged sector are possible.

4.3 Higgsing processes

In heterotic compactification, Higgsing processes in the low-energy field theory have a clear

interpretation in terms of deformations of the gauge bundle. Here, we describe one example

each of the deformations associated to Higgsing on fundamental, double antisymmetric and

triple antisymmetric matter, together with a table detailing some of the key information in

the other cases. The full analysis of the remaining examples can be found in appendix D.

1This is the minimum possible change given the expression for the number of 35’s. In fact, that c1(L)2

is even for an arbitrary line bundle L is enforced by the topology of K3.
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Representation Cohomology Multiplicity

5 H1(∧2V) 3c2(V)− 20

5 H1(∧2V∨) 3c2(V)− 20

10 H1(V∨) c2(V)− 10

10 H1(V) c2(V)− 10

1 H1(End0(V)) 10c2(V)− 48

Table 10. The cohomology associated to each representation of the low-energy gauge group SU(5).

4.3.1 Higgsing on fundamental matter

Let us start by considering what happens to the bundle as we Higgs from SU(6) to SU(5).

The relevant group theory in this case is

SU(6) → SU(5)×U(1) (4.17)

6 = 1−5 + 51 (4.18)

15 = 5−4 + 102 (4.19)

20 = 10−3 + 103 . (4.20)

Clearly, we wish to turn on the singlet of SU(5) inside the fundamental of SU(6) to achieve

the Higgsing. We see from table 7 that the 6 and 6 half hypermultiplets, which combine to

form a single hypermultiplet, are given by the cohomologies H1(V3⊗V2) and H1(V∨3 ⊗V2)

respectively.

In terms of bundle geometry, turning on fields descending from these cohomology

groups corresponds to forming the following extension.

0→ V2 → V → V3 → 0 (4.21)

In fact, the bundle that we form is a deformation of this extension and its dual, as described

in the work of Li and Yau [54].

The bundle V in (4.21) has structure group SU(5), which is the relevant case to arrive

at an SU(5) low-energy symmetry. One can check how the matter that one obtains from

V compares to that which follows from a simple decomposition of the multiplets in the

original SU(6) theory using the branching rules in (4.17).

We start by computing the matter content associated to an SU(5) bundle, with the

general result being given in table 10. In computing this table we have used the usual

decomposition of the adjoint representation of E8,

E8 ⊃ SU(5)× SU(5) (4.22)

248 = (5,10) + (10,5) + (10,5) + (5,10) + (24,1) + (1,24) (4.23)

together with Hirzebruch-Riemann-Roch.
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SU(5) Representation # from SU(6) multiplet decomposition # found after transition

1 10c2(V3) + 10c2(V2)− 46 10c2(V3) + 10c2(V2)− 48

5 3c2(V3) + 3c2(V2)− 18 3c2(V3) + 3c2(V2)− 20

5 3c2(V3) + 3c2(V2)− 18 3c2(V3) + 3c2(V2)− 20

10 c2(V3) + c2(V2)− 10 c2(V3) + c2(V2)− 10

10 c2(V3) + c2(V2)− 10 c2(V3) + c2(V2)− 10

Table 11. Matter content after Higgsing an SU(6) to an SU(5) theory, both via a naive decompo-

sition of the initial SU(6) multiplets and via a direct computation from the resulting SU(5) bundle.

Next we note that the second Chern class of the V resulting from a Higgsing transition

such as that being considered in equation (4.21) is given by,

c2(V) = c2(V3) + c2(V2) . (4.24)

Using these results we can compile table 11, which compares the matter content asso-

ciated to the bundle V in (4.21) with a naive decomposition of the original SU(6) matter,

as given in table 7, using the branching rules (4.17).

The differences in the last two columns of table 11 consist of two full fundamental

hypermultiplets and one scalar hypermultiplet, and arise naturally due to degrees of free-

dom being absorbed by massive gauge bosons, or being given a mass by D-terms, in the

Higgsing process. We can now confirm that this result matches the field theory analysis

given in section 2.3.1.

Similar results are found by Higgsing SU(7) and SU(8) on their fundamental repre-

sentations. The details of these computations can be found in appendix D. The SU(7)

case in particular has some different structure in that there are two different sources of 7

representations in terms of cohomology, corresponding to two different bundles that are

being deformed during the transition. Here we content ourselves with a presentation of the

relevant bundle deformations in table 12.

4.3.2 Higgsing on two-index antisymmetric matter

In this case we will give the example of Higgsing an SU(7) gauge group on the 21 dimen-

sional representation. The relevant group theory in this case is the following.

SU(7) ⊃ SU(5)× SU(2)×U(1) (4.25)

21 = (1,1)−10 + (5,2)−3 + (10,1)4

7 = (1,2)−5 + (5,1)2

35 = (5,1)−8 + (10,1)6 + (10,2)−1

We see that giving a VEV to a 21 21 pair will break SU(7) down to SU(5) × SU(2)

with a Green-Schwarz massive U(1) also being present (this Green-Schwarz U(1) is the

one originally present in the heterotic SU(7) model and does not correspond to the U(1)
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Group transition Bundle transition Fields Gaining Vev

SU(6)→ SU(5)
VSU(2) ⊕ VSU(3) → ṼSU(5)

where 0→ VSU(2) → VSU(5) → VSU(3) → 0
H1(VSU(2) ⊗ VSU(3))

SU(7)→ SU(6)

VU(2) ⊕ L → ṼSU(3) ⊕ ṼSU(2)

where 0→ L∨ → VSU(2) → L → 0

and 0→ L → VSU(3) → VU(2) → 0

H1(V∨U(2) ⊗ L)

H1(L∨2)

SU(8)→ SU(7)
L ⊕ L∨ → ṼU(2) ⊕ L

where 0→ L∨2 → VU(2) → L → 0
H1(L3)

Table 12. Higgsing on the fundamental in various heterotic theories, and the resulting deformation

of the gauge bundle. The tildes over some bundles in the second column indicate a Li-Yau type

deformation of the untilded object and its dual [54].

in (4.25)). The 21’s, according to table 8, lie in the cohomology H1(V2). In terms of

bundle topology, giving an expectation value to such a field corresponds to forming the

following bundle.

V = Q⊕L (4.26)

where 0 → V2 → Q→ O → 0

As in previous cases, one should really think of Q as being a deformation of this extension

and its dual, a la Li-Yau [54]. Here Q is a U(3) bundle and the line bundle L is unaffected

by the transition. The overall structure group is S(U(3) × U(1)) which does indeed break

E8 to SU(5)× SU(2)×U(1) (where the last factor is a common Green-Schwarz anomalous

factor between the structure group and the visible gauge group).

In order to compare the matter content before and after such a Higgsing transition,

we must first compute the matter content in the SU(5) × SU(2) theory. The group theory

for a general heterotic SU(5) × SU(2) case is as follows.

E8 ⊃ SU(5)× SU(2)× SU(3)×U(1) (4.27)

248 = (5,1,1)−6 + (5,1,3)4 + (5,2,3)−1 + (10,2,1)−3 + (10,1,3)2 (4.28)

+(10,2,1)3 + (10,1,3)−2 + (5,1,1)6 + (5,1,3)−4 + (5,2,3)1

+(24,1,1)0 + (1,1,1)0 + (1,3,1)0 + (1,2,3)5 + (1,2,3)−5 + (1,1,8)0

This leads us to the matter content given in table 13 for such a theory.

For the particular case of an S(U(3)×U(1)) bundle formed by a transition of the form

given in equation (4.26) we have:

c2(Q) = c2(V2) (4.29)

c1(L) = c1(L) . (4.30)

Given this we can form the same table as we did in the case of Higgsing on the fundamental:

comparing a direct decomposition of the SU(7) multiplets under the symmetry breaking
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Representation Cohomology Multiplicity

(5,1) H1(L∨2)⊕H1(Q∨ ⊗ L) c2(Q)− 5c1(L)2 − 8

(5,2) H1(Q) c2(Q)− 1
2c1(L)2 − 6

(10,2) H1(L∨) −1
2c1(L)2 − 2

(10,1) H1(Q⊗L) c2(Q)− c1(L)2 − 6

(1,1) H1(End0(Q)) 6c2(Q)− 2c1(L)2 − 16

(1,2) H1(Q⊗L2) c2(Q)− 9
2c1(L)2 − 6

Table 13. The cohomology associated to each representation of the low-energy gauge group SU(5)×
SU(2)×U(1).

SU(5)× SU(2) Representation # from SU(7) multiplet decomposition # found after transition

(1,1) 6c2(V2)− 2c1(L)2 − 14 6c2(V2)− 2c1(L)2 − 16

(1,2) c2(V2)− 9
2c1(L)2 − 6 c2(V2)− 9

2c1(L)2 − 6

(5,1) c2(V2)− 5c1(L)2 − 8 c2(V2)− 5c1(L)2 − 8

(5,2) c2(V2)− 1
2c1(L)2 − 4 c2(V2)− 1

2c1(L)2 − 6

(10,1) c2(V2)− c1(L)2 − 6 c2(V2)− c1(L)2 − 6

(10,2) − 1
2c1(L)2 − 2 − 1

2c1(L)2 − 2

Table 14. Matter content after Higgsing an SU(7) to an S(U(5) × U(2)) theory, both via a naive

decomposition of the initial SU(7) multiplets and via a direct computation from the resulting

S(U(5)×U(2)) bundle.

with the spectrum of the bundle after the transition. This is given in table 14. Once more,

the differences between the second and third columns in table 14 precisely match what we

would expect from an analysis of the Higgs mechanism in such a situation. This Higgsing

is precisely of the form described in a field theory context in section 2.3.2.

Similar results are found by Higgsing SU(6) and SU(8) on their two-index antisymmet-

ric representations. The details of these computations can be found in appendix D. Here

we content ourselves with a presentation of the relevant bundle deformations in table 15.

4.3.3 Higgsing on three-index antisymmetric matter

To illustrating Higgsing on three-index antisymmetric matter we will consider the example

of SU(8). The relevant group theory in this case is as follows.

SU(8) ⊃ SU(5)× SU(3)×U(1)

56 = (1,1)−15 + (5,3)−7 + (10,1)9 + (10,3)1

8 = (1,3)−5 + (5,1)3

28 = (1,3)−10 + (5,3)−2 + (10,1)6

Giving a VEV to the SU(5) singlets in a 56, 56 pair will therefore break SU(8) →
SU(5)×SU(3) with a Green-Schwarz massive U(1) also being present. The 56’s, according
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Group transition Bundle transition Fields Gaining VEV

SU(6)→ SU(4)× SU(2)
VSU(2) ⊕ VSU(3) → VSU(2) ⊕ ṼSU(4)

where 0→ VSU(3) → VSU(4) → O → 0
H1(VSU(3))

SU(7)→ SU(5)× SU(2)
VU(2) ⊕ L → ṼU(3) ⊕ L

where 0→ VU(2) → VU(3) → O → 0
H1(VU(2))

SU(8)→ SU(6)× SU(2)
L ⊕ L∨ → ṼSU(2) ⊕ L⊕ L∨

where 0→ L∨ → VSU(2) → L → 0
H1(L∨2)

Table 15. Higgsing on the two-index antisymmetric representation in various heterotic theories,

and the resulting deformation of the gauge bundle. The tildes over some bundles in the second

column indicate a Li-Yau type deformation of the untilded object and its dual [54].

Representation Cohomology Multiplicity

(5,1) H1(L∨3) −9
2c1(L)2 − 2

(5,3) H1(L2) −2c1(L)2 − 2

(5,3) H1(Q∨) c2(Q)− 1
2c1(L)2 − 4

(10,1) H1(Q∨ ⊗ L2) c2(Q)− 5
2c1(L)2 − 4

(10,3) H1(L) −1
2c1(L)2 − 2

(1,1) H1(End0(Q)) 4c2(Q)− c1(L)2 − 6

(1,3) H1(Q⊗L2) c2(Q)− 13
2 c1(L)2 − 4

Table 16. The cohomology associated to each representation of the low-energy gauge group SU(5)×
SU(3).

to table 9, lie in the cohomology H1(L). In terms of bundle topology, giving an expectation

value to such a field corresponds to forming the following bundle.

V = Q⊕L∨ (4.31)

where 0 → L → Q→ O → 0 (4.32)

Here V is an S(U(2)×U(1)) bundle. The correct embedding of S(U(2)×U(1)) does indeed

break E8 to SU(5)× SU(3)× SU(2)×U(1).

The group theory for the SU(5) × SU(3) case is as follows.

E8 ⊃ SU(5)× SU(3)× SU(2)×U(1) (4.33)

248 = (5,1,1)−6 + (5,3,1)4 + (5,3,2)−1 + (10,1,2)−3 + (10,3,1)2

+(10,1,2)3 + (10,3,1)−2 + (5,1,1)6 + (5,3,1)−4 + (5,3,2)1

+(24,1,1)0 + (1,1,1)0 + (1,1,3)0 + (1,3,2)5 + (1,3,2)−5 + (1,8,1)0

This leads to a spectrum for such a heterotic compactification as given in table 16.
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SU(5)× SU(3) Representation # from SU(8) multiplet decomposition # found after transition

(5,1) − 9
2c1(L)2 − 2 − 9

2c1(L)2 − 2

(5,3) −2c1(L)2 − 2 −2c1(L)2 − 2

(5,3) − 1
2c1(L)2 − 2 − 1

2c1(L)2 − 4

(10,1) − 5
2c1(L)2 − 4 − 5

2c1(L)2 − 4

(10,3) − 1
2c1(L)2 − 2 − 1

2c1(L)2 − 2

(1,1) −c1(L)2 − 4 −c1(L)2 − 6

(1,3) − 13
2 c1(L)2 − 4 − 13

2 c1(L)2 − 4

Table 17. Matter content after Higgsing an SU(8) to an SU(5) × SU(3) theory, both via a naive

decomposition of the initial SU(8) multiplets and via a direct computation from the resulting

S(U(2)×U(1)) bundle.

Group transition Bundle transition Fields Gaining VEV

SU(6)→ SU(3)× SU(3)
VSU(2) ⊕ VSU(3) → Ṽ ′SU(3) ⊕ ṼSU(3)

where 0→ VSU(2) → V ′SU(3) → O → 0
H1(VSU(2))

SU(7)→ SU(4)× SU(3)
VU(2) ⊕ L → Ṽ ′U(2) ⊕ VU(2)

where 0→ L → V ′U(2) → O → 0
H1(L)

SU(8)→ SU(5)× SU(3)
L ⊕ L∨ → ṼU(2) ⊕ L∨

where 0→ L → VU(2) → O → 0
H1(L)

Table 18. Higgsing on the three-index antisymmetric representation in various heterotic theories,

and the resulting deformation of the gauge bundle. The tildes over some bundles in the second

column indicate a Li-Yau type deformation of the untilded object and its dual [54].

For the particular S(U(2) × U(1)) bundle that we achieve after transition, as given in

equation (4.31), we have that,

c2(Q) = 0 . (4.34)

With this information we can finally construct the table comparing the break up of the

SU(8) multiplets with the directly computed matter spectrum after the bundle transition,

as we did in the previous cases. This is found in table 17.

As in all of the previous cases, this result is in perfect agreement with the field theory

expectations given in section 2.3.2.

Similar results are found by Higgsing SU(6) and SU(7) on their three-index antisym-

metric representations. The details of these computations can be found in appendix D. Here

we content ourselves with a presentation of the relevant bundle deformations in table 18.

It should be noted that, due to the lack of 70 (quadruple antisymmetric) representa-

tions in the perturbative heterotic spectrum, one can not break to SU(4)×SU(4)×U(1) in

this context and so our analysis of the possible Higgsing transitions terminates here. Once

again, it is this boundary case of what is possible in perturbative heterotic theory that fails

to reproduce the most general possibility from a field theory perspective.
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4.4 Small Instanton transitions and Higgsing

It is interesting to note that the processes of Higgsing and undergoing small instanton

transitions need not commute. We illustrate this here with the case of small instanton

transitions before and after Higgsing SU(7) to SU(6).

As described in section 4.2, before the Higgsing a minimal small instanton transition

results in the following change in spectrum.

1× (35 + 35) + 5× (7 + 7)↔ 3× (21 + 21) + 14× (1) (4.35)

The group theory governing a Higgsing of SU(7) on the fundamental representation is as

follows.

SU(7) → SU(6)×U(1) (4.36)

7 = 1−6 + 61

21 = 6−5 + 152

35 = 15−4 + 203

Application of these branching rules to the transition (4.35) results in the following SU(6)

transition

2× (20) + 2× (6 + 6)↔ 4× (1) + 2× (15 + 15) (4.37)

Purely from the point of view of an SU(6) bundle as in section 4.1.1, after Higgsing,

we know that one can have the following small instanton transition

(20) + (6 + 6)↔ 2× (1) + (15 + 15) (4.38)

which is more minimal than the one in (4.37) above.

If an SU(6) theory is obtained by Higgsing SU(7), however, then the bundle of structure

group SU(2) will have the special form described in table 12:

0→ L∨ → VSU(2) → L → 0 . (4.39)

Such a bundle has c1(VSU(2)) = −c1(L)2. The quantity c1(L)2 for line bundles on K3 is

always even and thus small instanton transitions involving an exchange of second Chern

class between SU(3) and SU(2) bundles of the form (4.39) always results in a non-minimal

transition of the type given in (4.37) in the SU(6) theory.

After an SU(7) Higgsing, a subsequent small instanton transition in the SU(6) theory

can change the bundle associated to the SU(6) theory such that its SU(2) valued component

is not of the form (4.39). Such a transition could be of the more minimal type (4.38) and

the resulting SU(6) theory then could not be obtained by Higgsing any SU(7) model.

5 Heterotic/F-theory duality

The solutions presented in previous sections provide an interesting playground for

heterotic/F-theory duality since they correspond to generically reducible vector bundles
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in the heterotic theory. Such reducible vector bundles give rise to many interesting fea-

tures not yet fully explored in even the 6-dimensional duality, including small instanton

transitions on a single E8 fixed plane, the intricate intersection structure of reducible spec-

tral covers and the presence of generically massive Green-Schwarz U(1) symmetries.

In this section we consider the geometry of heterotic/F-theory dual pairs to be as

follows [2, 18, 19]:

Heterotic on πh : Xn
E−→ Bn−1 ⇔ F-theory on πf : Yn+1

K3−→ Bn−1 (5.1)

where Xn is elliptically fibered over Bn−1 and the K3-fibered manifold Yn+1 admits a more

detailed description as an elliptically-fibered Calabi-Yau (n + 1)-fold with section over a

base Bn which is itself P1 fibered over Bn−1.

5.1 The stable degeneration limit

To begin, we review briefly the standard arguments of heterotic/F-theory dual-

ity [2, 14, 19, 55]. As discussed in the Introduction, in the case that the heterotic geometry

is elliptically fibered and the F-theory geometry is K3 fibered, there exists a weakly coupled

limit of both theories.

As is well-known in the literature (see [20, 55, 56] for reviews), this limit in parameter

space corresponds to the large volume and weak coupling regime in the heterotic theory

and is realized geometrically in the F-theory geometry via the following log semi-stable

degeneration of the Calabi-Yau manifold, Y :

Yn+1 −→ Y
(1)
n+1 ∪D Y

(2)
n+1 (5.2)

where Y (1) and Y (2) are non-CY, dP9 fibered (n+ 1)-folds, glued along a common divisor

D [56–58]. In the case of heterotic duality, D = Xn is a CY variety of one lower dimension

than Yn+1 and forms the background of the heterotic geometry.

Now, the heterotic/F-theory dictionary says that if the E8 × E8 heterotic theory is

compactified on D = Xn with vector bundles V1,V2 over Xn, the spacetime symmetries

and matter spectrum should should match that of F-theory compactified on Y (1) ∪D Y (2).

That is, for singularities leading to symmetries Gi on Y (i) (i = 1, 2), we expect structure

groups Hi for Vi where Gi ⊂ E8 is the commutant of Hi. Moreover, the full degrees of

freedom of the theory can be counted and found to match (see table 19 for a schematic

review of the matching of the geometric degrees of freedom in the 6-dimensional effective

theories).

Practically, to take the stable degeneration limit of the F-theory geometry we must

consider scaling the coefficients of f, g such that the (n + 1)-dimensional F-theory K3

fibration degenerates into a fiber product of dP9s. In terms of the Weierstrass model itself,

if σ = 0 and σ = ∞ are chosen to define the loci where the symmetries arise in each E8

factor of the heterotic dual (i.e., the two sections defining the base Bn of the P1 fibration),

then we have

f ∼
8∑
i=0

fiσ
i , g ∼

12∑
j=0

gjσ
j (5.3)
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Het/Bundle Het/Spec. Cov. F-theory

H1(End0(Vi)) Def(S) H2,1(Y (i))

Jac(S) H3(Y (i),R/Z)

Discrete data of LS H2,2(Y (i),Z)

Table 19. A schematic matching of the duality in 6-dimensions: heterotic vector bundle moduli,

encoded as spectral data (S,LS) are matched to geometric moduli of the (resolved) F-theory dP9-

fibered geometry in the stable degeneration limit [55–57].

and in the stable degeneration limit, it is possible to choose a scaling in which

fi scales as ε(i−4) (5.4)

gj scales as ε(j−6) .

In the limit that ε→ 0, it is clear that the zero locus of the discriminant ∆ = 4f3 + 27g2

can be divided in “half” with nonabelian symmetry potentially present on each pole (σ = 0

and σ = ∞) of the P1 fiber. In particular, the limit ε → 0 divides the K3 fiber into two

rationally elliptically fibered surfaces (i.e. dP9 surfaces) [55, 57]. This well-known limit is

straightforward to apply for all Weierstrass models with SU(N) symmetry with N ≤ 6. In

these cases, if the complex structure is tuned to induce an SU(5) symmetry on the σ = 0

locus for example, the stable degeneration limit isolates the SU(5) ⊂ E8 inside a single E8

factor and effectively “separates” all fi with i > 4 and gj with j > 6 which correspond

to the second E8 factor (fully broken in this case). However, for SU(7), SU(8) as we will

see below, this limit can be somewhat subtle to take, since some fi, gj with i ≤ 4, j ≤ 6

are determined in terms of fi+n, gj+m for some n,m such that i + n ≥ 4, j + m ≥ 6 (See

for example the Weierstrass coefficients in (3.29) and (3.30) in section 3.2). In these cases,

care must be taken with the powers of ε in each term. We will return to this issue in the

following sections.

For now, we will begin our investigation of heterotic/F-theory dual solutions, as well

as the “Higgsing chains” linking them, by reviewing a particular representation of the

geometry of principal bundles in heterotic compactifications — the so-called spectral cover

construction [59, 60].

5.2 A very brief review of the spectral cover construction

In order to match the degrees of freedom in the heterotic geometry (Xn, π : V → Xn) with

that in the F-theory (n+ 1)-fold (i.e. Yn+1 in (5.1)), it is necessary to present the data of

the heterotic bundle as a spectral cover [59–61] or more generally, a cameral cover [61–63].

For a review of this bundle construction see [60]. For now, we will focus on the simple

case of SU(N) structure groups and spectral covers. It will suffice to recall that under the

Fourier-Mukai transform [59], a vector bundle with structure group SU(N) is equivalent to

a pair (S,LS) where S is a divisor in the elliptically fibered heterotic CY geometry and LS
is a rank 1 sheaf over S. The heterotic fibration can be presented in Weierstrass form as

Y 2 = X3 + f4X + g6 . (5.5)
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Then, the divisor S is called the “spectral cover” and can be represented as the zero locus

of a polynomial constraint of the form

a0Z
N + a2XZ

N−2 + a3Y Z
N−3 + . . . = 0 (5.6)

ending in aNX
N
2 for N even and aNX

N−3
2 Y for N odd [55]. The coefficients aj are sections

of line bundles over the base B, of π : Xn
E−→ B, given by

aj ∈ H0(B,K⊗jB ⊗O(η)) (5.7)

where in 6-dimensional compactifications, η = c2(V ) and in 4-dimensional compactifica-

tions c2(V ) = S0 ∧ η + ζ2,2 with S0 the form dual the zero section and ζ2,2 the pullback

of a {2, 2} form on B. The class of S is determined to be [S] = N [S0] + π∗(η). The class

of the rank one sheaf on the spectral cover LS is also determined entirely by the topology

of V (see, for example, [20] for a review). With this in hand we turn now to the mat-

ter transitions explored in sections 4, viewed now through the lens of the spectral cover

construction.

5.3 Matter transitions in spectral covers

To begin, let us consider briefly the form that the matter transitions described in sec-

tions 3–4 will take in the context of heterotic/F-theory duality. Examples of other related

transitions have been explored in the heterotic literature (see [64, 65] for representative

examples). As described in those works and in section 4, small instanton transitions on a

single E8 fixed plane can only arise when the vector bundle geometry — an H-principal

bundle on Xn with H ⊂ E8 — is reducible. That is, when H = H1⊗H2 and the associated

vector bundle decomposes as a direct sum V = V1 ⊕ V2. In this case, the small instanton

transition takes the form

V1 ⊕ V2 −→ V ′1 ⊕ V2 ⊕ I −→ V ′1 ⊕ V ′2 (5.8)

where I is a sky-scraper sheaf supported on the codimension 2 locus wrapped by M5/N5-

branes in Xn. In the language of spectral covers then, we consider the simplest case where

V1,V2 are both SU(N) bundles for some N . In particular, the situation in which instanton

number is removed from V1 and then added to V2 can be summarized as

(S1)(S2) = 0 −→ a(w)(S ′1)(S2) = 0 −→ (S ′1)(S ′2) = 0 (5.9)

where w represents coordinates on the base B of the heterotic elliptic fibration. Here a(w) is

a so-called “vertical component” of the spectral cover — corresponding to a small instanton

in the heterotic theory [66]. The function a(w) corresponds exactly to the function (also

called “a”) describing the F-theory matter transitions given in section 3.3.

As a concrete example, consider an SO(12) theory. The commutant of this symmetry

within E8 is SU(2)×SU(2) which leads to a heterotic bundle geometry consisting of a sum

of two SU(2) vector bundles V1 ⊕ V2. For such reducible vector bundle, the spectral cover

takes the form of a product

SV = (a0Z
2 + a2X)(b0Z

2 + b2X) = 0 (5.10)
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In the SO(12) theory, the matter consists of localized 32 and 32′ multiplets, located at

the zeros of a2 and b2, respectively, and fundamental matter (12s) associated with the

intersection S1 ∩ S2 of the two SU(2) components of the spectral cover. The simplest

transitions then take the form of separating out a common factor of (for example) a2, a0

and then “absorbing” it into b0, b2.

To illustrate this more concretely, consider 6-dimensional heterotic/F-theory geometry

with the spectral covers given above corresponding to curves inside a K3 surface. Since the

minimal second Chern class for an SU(2) bundle on K3 is c2(V) = 4, we will parameterize

the topology of the pair V1,V2 as c2(V1) = 4 + r, c2(V2) = 8 + n − r [14]. It follows that

the degrees of the functions in (5.10) are

a0 ∼ 4 + r b0 ∼ 8 + n− r (5.11)

a2 ∼ r b2 ∼ 4 + n− r (5.12)

With this in mind, we can denote an arbitrary function of degree k on P1 via the subscript

fk. Then, as in (5.9), a transition removing a small instanton from V1 and merging it into

the bundle V2 takes the form

(e4+rZ
2 + frX)(g8+n−rZ

2 + h4+n−rX)

−→ (ap)(e
′
4+r−pZ

2 + f ′r−pX)(g8+n−rZ
2 + h4+n−rX)

−→ (e′4+r−pZ
2 + f ′r−pX)(g′8+n−r+pZ

2 + h′4+n−r+pX) (5.13)

where p ≤ r. Note that in the process of realizing the transition in the spectral cover

((tuning a common factor in S1)→ (identifying it as an overall factor of S2 )→ (deforming

S2 away from factorized form)), the topology of the bundles V1 and V2 has changed since

c2(V ′1) = 4 + r − p and c2(V ′2) = 8 + n − r + p. In this case the spectrum changes only

between the 32 and 32′ fields:2

(r)
1

2
32′s+ (4 + n− r) 1

2
32′s→ (r − p) 1

2
32′s+ (4 + n− r + p)

1

2
32′s (5.14)

As a concluding observation, it should be noted that while we illustrated this example

in 6 dimensions for simplicity, entirely analogous structure exists in 4 dimensions. There

the spectral covers are complex surfaces inside Calabi-Yau 3 folds and once again, co-

dimension two components (here curves) can be separated off one component and the

deformed smoothly into the other. One remarkable difference in the 4-dimensional theory

however is that in the N = 1 theory, such transitions can also be chirality changing [64, 65].

We will return to this point later. For now, we continue towards understanding the basic

structure of the transitions described in sections 3–4, and the Higgsing chains linking them,

beginning with the SU(6) theory.

2Note that the number of 12’s is unchanged in this correspondence since it is determined solely by the

geometric intersection number [S1] · [S2] ⊂ K3. For the geometry above this gives 2(8 + n) points which is

independent of the transition given in (5.13).
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5.4 SU(6) heterotic/F-theory dictionary

As described in section 3.2.1, and equations (3.16) and (3.17), the SU(6) F-theory geometry

is parameterized by 5 functions

φ2, α, β, ν , λ (5.15)

associated, respectively with the divisors

− 2K + L,−K +N − L,L,−2K +N − L,−4K +N − L (5.16)

The matching of the heterotic and F-theory effective physics can be made readily in both 6-

and 4-dimensions. For concreteness, in the following paragraphs we will make the explicit

correspondence between the degrees of freedom in the 6-dimensional theory, but it should

be kept in mind that the general structure is equally applicable to 4-dimensions.

From section 4.1.1, it is clear that the heterotic dual SU(6) theory on K3 has commu-

tant SU(2)× SU(3) inside E8. The bundle V, with c2(V ) = 12 + n can be denoted as

V = V2 ⊕ V3 (5.17)

As above, let V2 have structure group SU(2) and c2(V2) = 4 + r, while V3 has structure

group SU(3) and c2(V3) = 8 + n− r.
Using the spectral cover construction as described in the previous section, the vector

bundle V in (5.17) can be described as a reducible spectral cover, SV = S1∪S2 of the form

given in (5.6), inside the elliptically fibered K3 surface. Explicitly,

SV = (a0Z
2 + a2X)(b0Z

3 + b2XZ + b3Y ) = 0 (5.18)

where the degrees of the functions ai and bj (over the P1 base) are

a0 ∼ 4 + r b0 ∼ 8 + n− r (5.19)

a2 ∼ r b2 ∼ 4 + n− r (5.20)

b3 ∼ 2 + n− r (5.21)

A key to matching these 5 functions with those in (5.15) is to note that the 20’s of SU(6)

are located at the zeros of a2 and the 15’s at the zeros of b3. It follows by inspection

of (3.16) and (3.17) then, that the parameter matching takes the form

a0 a2 b0 b2 b3

∼ φ2 β λ ν α
(5.22)

This matches with the association made in table 3.

Re-writing the spectral cover in this notation we have:

SV = (φ2Z
2 + βX)(λZ3 + νXZ + αY ) = 0 (5.23)

It is important to recall here that the matching in (5.22) is only up to proportionality. There

may be constants/normalization in this matching that could be significant in understanding

the dual pair; we return to this topic below.
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Finally, as observed above, it can be verified that the charged matter spectrum of the

SU(6) theory is readily understood in terms of the spectral cover as the loci where α = 0

(15 representations), β = 0 (20s)and the points where S1∩S2 (6s). The matter transitions

corresponding to (5.8) in this case exactly match those found in the F-theory geometry

given in section 3. Recall, from section 3.3 the transition was realized via

α→ aα′,

ν → aν ′, (5.24)

λ→ aλ′.

which corresponds to the separation of a small instanton from the SU(3) bundle V3 in (5.23).

This was followed by a deformation which deformed the instanton into a smooth SU(2)

bundle V ′2:

aβ → β′, (5.25)

aφ2 → φ′2.

exactly as expected from (5.23). Given this exact matching between the parameter spaces

of the heterotic and F-theory descriptions, we can clearly follow the heterotic transition

just as the F-theory transition along a one-parameter family of theories with the parameter

ε̂ = 0 at the superconformal point and taking positive and negative signs for the theories

with two different matter contents.

5.5 SU(7) tuning

In this section we explore heterotic/F-theory dual pairs in the SU(7) theory. Unlike the

case of SU(6) given above, here the spectral cover is not a simple factorization of the

form (5.10) and (5.18), but a more interesting and complex object. To begin, we will

compare the tunings/symmetry enhancements described in sections 3 and 4 for SU(7)

gauge symmetry. Recall that from (3.29) and (3.30), the tuning taking SU(6)→ SU(7) is

given by

φ2 = 3ζ1
2 + ωδ2 (5.26)

β = δ2

λ =
1

3
ζ1

2ζ2 −
1

18
ζ1ξω +

1

9
δ2ζ2ω + λ1δ

2ξ

ν = ζ2δ
2 + ζ1ξ

α = δξ

and the “middle” coefficients that will be related (in the stable degeneration limit) to the

heterotic Weierstrass model, (5.5) take the form:

f4 = −6ζ1λ1 −
1

12
ω2 + ψ4δ

2 (5.27)

g6 =
1

108

(
−36f5δ

4ζ2+972δ2λ1
2−36f5δ

2ζ1ξ−9f6δ
6ξ2−108ζ2

1ψ4−108ζ1λ1ω−36δ2ψ4ω−ω3
)
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The key question that must be addressed is whether or not this choice of complex

structure corresponds in the heterotic theory to the deformation (i.e. splitting) of vector

bundles required by this symmetry enhancement described in section 4.1.2?

First, it is useful to briefly review the enhancement of symmetry from the point of

view of vector bundle geometry in the heterotic theory. As in (5.17), the reducible bundle

with structure group SU(2) × SU(3) leading to commutant SU(6) ⊂ E8 is

V = V2 ⊕ V3 (5.28)

From section 4, we recall that in the transition from SU(6) → SU(7) the heterotic bundle

structure group must reduce from SU(2) × SU(3) to S[U(2) × U(1)] via the “splitting” of

the bundles V2,V3:

V2 → L⊕L∨ (5.29)

V3 → L∨ ⊕ U2 (5.30)

where L is a line bundle and c1(U2) = c1(L) (i.e. U2 is a U(2) bundle). The commutant of

SU(7) ⊂ E8 is SU(2)×U(1) and the underlying (fundamental) bundle geometry is L∨⊕U2

(the decomposition of V2 above is simply auxiliary information in this case).

To match the tuning in the heterotic and F-theory descriptions, the first step is to

consider how such a decomposition is manifest when the bundle V = V2 ⊕ V3 is described

via a spectral cover as in (5.23). Can we match this decomposition to the enhancement

given in (5.26)? For a bundle described via a smooth spectral cover,3 decomposition of the

vector bundle into a direct sum usually corresponds to factorization of the spectral cover

(i.e. the spectral cover becomes reducible). In the case above, it is clear from (5.29) that

the SU(2) portion of the bundle must split into a sum of two line bundles. As it turns

out, this decomposition into Abelian components is a particularly subtle process from the

point of view of a spectral cover description [55, 60, 68]. A well-behaved (i.e. smooth)

spectral cover (corresponding to a rank N vector bundle) intersects each fiber at exactly N

points. Thus, by definition, a smooth spectral cover associated to a line bundle must be a

1-sheeted cover of the base, intersecting each fiber exactly once. This however, is a familiar

object in the fibration geometry: such a 1-sheeted cover is in fact a section of the elliptic

fibration. It is important to note that it is not the case that any line bundle produces a

section of the fibration under Fourier-Mukai transform. Instead, generic line bundles lead

to singular/vertical spectral covers.4 However, it is the case that any smooth 1-sheeted

cover of the base (describing a line bundle) is also a section to the elliptic fibration.

Returning again to the expected geometry, it is clear from (5.29) that upon tuning

SU(6)→ SU(7) the SU(2) bundle should decompose as a sum of a line bundle and its dual.

As a result, if such a bundle can be described as a smooth spectral cover, this should in

turn correspond to an extra section appearing in the K3 geometry. In this vein, a sum of

the form (L ⊕ L∨) should correspond to a section and the “inverse” of that section (i.e,

two sections leading to marked points on each elliptic fiber with coordinates [X ′, Y ′, Z] and

[X ′′, Y ′′,−Z] which sum to the zero section under the addition law of the elliptic curve).

3I.e. for so-called “regular” bundles [60, 67].
4In some cases these can correspond to so-called “T-brane” solutions [69]. See also section 7.9 of [20].
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5.5.1 The heterotic K3 geometry

As described above, an SU(7) gauge symmetry must correspond to the reduction of an

SU(2) bundle structure group to S[U(1)×U(1)], which after Fourier-Mukai transform will

correspond to 1-sheeted spectral covers of the base P1 ⊂ K3. As a result, an SU(7)

symmetry in the heterotic theory does not allow the form of the spectral cover and that of

the K3 surface to be considered separately. They are intrinsically correlated and a generic

SU(7) tuned F-theory geometry (with a heterotic dual) should lead to an enhanced Mordell-

Weil group in the dual K3 geometry. To investigate this expectation we first consider the

form of the Weierstrass coefficients f4 and g6 from (5.27). If this K3 geometry has an

additional rational section (i.e. Mordell-Weil rank 1), then as derived in [70] it must be

possible to write it in the following general form (see eq. (B.19) of [70]):

Y 2 = X3 +

(
c1c3 − b2c0 −

c2
2

3

)
XZ4 +

(
c0c3

2 − 1

3
c1c2c3 +

2

27
c2

3 − 2

3
b2c0c2 +

b2c1
2

4

)
Z6

(5.31)

for some functions ci, b.

However, before comparing to (5.27), care must be taken with the stable degeneration

limit. In matching the degrees of freedom in the heterotic and F-theory geometries, it

is necessary to take the limit described above in (5.2) and (5.4) in which the F-theory

geometry undergoes stable degeneration. In this case we hope to compare the coefficients

of fi with 0 ≤ i ≤ 3 and gj with 0 ≤ j ≤ 5 with the data of the spectral cover in (5.23)

(subject to the tuning in (5.26)) and (5.5) with the coefficients of f4 and g6 given in (5.27).

However, as described in section 5.1, we must consider the powers of ε present in each

term in the Weierstrass model in the limit that ε → 0. In fact, for the SU(7) solution,

g6 (5.27) has been tuned in terms of f5 and f6, both of which carry additional powers of ε.

As a result, this dependence must be taken into account in the ε limits, where the terms

dependent on f5 and f6 vanish. Here the stable degeneration limit leads to a modified form

for the “middle” coefficients in (5.27):

f4 → −6ζ1λ1 −
1

12
ω2 + ψ4δ

2 (5.32)

g6 →
1

108

(
972δ2λ1

2 − 108ζ2
1ψ4 − 108ζ1λ1ω − 36δ2ψ4ω − ω3

)
(5.33)

It is these values that we must take as defining the heterotic base geometry (5.5) in the

stable degeneration limit. That is, this elliptically fibered K3 forms the divisor D along

which Y1 and Y2 are glued in (5.2).

Remarkably, an inspection of (5.33) shows that it is of precisely the form required

by (5.31). The exact matching to the general two-section Weierstrass model is

c0 = ψ4 (5.34)

c1 = (6i)λ1

c2 = −(1/2)ω

c3 = (i)ζ1

b = ±(i)δ
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Choosing the sign identification of b = −iδ, then the fiber coordinate of the new section

in the K3 geometry is

[X,Y, Z] =

[
−1

3

(
3ζ1

2 + δ2ω
)
, i

(
ζ1

3 +
1

2
ζ1δ

2ω − 3λ1δ
4

)
,−iδ

]
(5.35)

With these observations in hand, it is at last possible to compare the tuning given

in (5.26) to the spectral cover and the expected bundle geometry in (5.29) and (5.30).

5.5.2 SU(7) symmetry and the spectral cover

We must begin by substituting the tuning (5.26) into the general SU(6) spectral cover

in (5.23). But first, it will be convenient for to choose the constants of proportionality

that were left free in (5.22) through specific normalization (this normalization choice is not

physically significant, but will merely serve to provide the clearest interpretation of the

degrees of freedom in the dual theories):

a0 = φ2 (5.36)

a2 = −3β

b0 = −3λ

b2 = ν

b3 = −α

With these choices, the tuning of the complex structure in F-theory given by (5.26) can be

substituted into the heterotic spectral cover in (5.23), to yield a new spectral cover:(
(3ζ2

1 + δ2ω)Z2 − 3δ2X)
)
× (5.37)(

−3

(
1

3
ζ1

2ζ2 −
1

18
ζ1ξω +

1

9
δ2ζ2ω + λ1δ

2ξ

)
Z3 + (ζ2δ

2 + ζ1ξ)XZ − δξY
)

= 0

Which can be re-written as(
(3ζ2

1 + δ2ω)Z2 − 3δ2X
)
× (5.38)(

−ζ2Z

3

(
(3ζ1

2 + δ2ω)Z2 − 3δ2X
)

+ ξ

[
−3(− 1

18
ζ1ω + δ2λ1)Z3 + ζ1XZ − δY

])
= 0

If the degrees of freedom have been paired correctly in the dual theories, this new spectral

cover must be exactly the Fourier-Mukai transform of the reduced bundle geometry given

in (5.29) and (5.30).

To verify this, consider first the SU(2) component of the spectral cover. This vanishes

on the locus

X =
1

3δ2
(3ζ2

1 + δ2ω)Z2 (5.39)

But by inspection, this is exactly the constraint yielding the additional rational sections

given in (5.35)! As expected, it is clear that over every point on the base, the two roots of

the SU(2) spectral cover sweep out precisely the new section and its “inverse” under the

addition law of the elliptic curve (replacing Z = −iδ with Z = +iδ). Now, since the new
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sections are “horizontal” in the K3 elliptic fibration, they intersect each fiber exactly once

and at equal and opposite points on the elliptic curve relative to the zero section (located

at Z = 0). As a result, in the Fourier-Mukai transform this is exactly a pair of line bundles

of the form

L ⊕ L∨ (5.40)

Thus, the tuning of (5.26), the enhanced rational sections of the elliptically fibered K3 and

the SU(2) component of the spectral cover exactly match the expectation of the bundle

decomposition given in (5.29). All that remains then, is to examine the SU(3) component

of the spectral cover.

Not only must the SU(3) component also decompose, it is clear by inspection of (5.29)

and (5.30) that one line bundle factor (L∨) is repeated in both the SU(2) and SU(3)

components of the reducible bundle. In the spectral cover description, we have seen that

the two roots of the SU(2) spectral cover have formed into a pair (corresponding to a line

bundle and its dual) and now it must be verified that at least one of those roots has also

become a root of the SU(3) spectral cover.

Inspecting (5.38), it is clear that the form of the SU(3) component on the locus

where (5.39) is satisfied (i.e. the roots of the SU(2) factor) reduces to

ξ

[
−3

(
− 1

18
ζ1ω + δ2λ1

)
Z3 + ζ1XZ − δY

]
= 0 (5.41)

We can now ask, does this vanish along either of the roots of (5.39)? Substituting the

new section of the K3 fibration (5.35) (i.e. the root with Z coordinate Z = −iδ) into the

remaining expression in (5.41), we find that it vanishes identically. Thus, our expectations

are fully verified and a single SU(2) root is now overlapping with one root of the SU(3)

spectral cover. Moreover it is easy to verify that this expression does not vanish on the

other SU(2) root (with Z = +iδ) as required. The remaining two roots of the SU(3)

component are distinct and correspond to the expected rank 2 bundle in the heterotic

geometry given in (5.30).

Thus far, on this locus, the correspondence is perfect between the F-theory Weierstrass

data, the heterotic bundle geometry, and the spectral cover description. There is only one

remaining element to be considered and this is the presence of a Green-Schwarz massive

U(1) in the heterotic effective theory.

From group theory alone, the reducible bundle V = L∨ + U2 with c1(U2) = c1(L)

given in (5.30) has structure group S(U(2) × U(1)) and within E8 this gives rise to a

commutant SU(7) × U(1). That is, at the level of group theory, any SU(7) symmetry

arising in a heterotic theory must be accompanied by an additional abelian gauge symmetry.

Generically, by the Green-Schwarz mechanism, this enhanced U(1) couples to the Kähler

axions of the base CY geometry (which transforms via shift symmetries) and becomes

massive (see [47–50, 52]). Since the presence of Green-Schwarz massive U(1)s in F-theory

has been the topic of much recent interest (see for example [71–78]), we turn now to the

appearance of this enhanced U(1) in heterotic/F-theory pair described above.
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5.5.3 SU(7) and Green-Schwarz massive U(1)s

As described in the previous subsection, the presence of an enhanced U(1) symmetry in

the heterotic theory is unavoidable (by group theory within E8). How then, are we to

understand this U(1) from the point of view of F-theory? To explore this, consider the

stable degeneration limit Y → Y (1) ∪D Y (2) as described in section 5.1 and (5.2), and the

Weierstrass model of Y (1) corresponding to the physics of a single E8 factor of the heterotic

effective theory. In this limit, the Weierstrass coefficients of Y (1) are given by

f ∼− δ12ξ4

48
+ σ

(
−1

6
δ10ζ2ξ

2 − 1

6
δ8ζ1ξ

3

)
(5.42)

+
1

6
σ2
(
−2δ8ζ2

2 − 4δ6ζ1ζ2ξ − δ6ξ2ω − 5δ4ζ1
2ξ2
)

+ σ3

(
−2

3
δ4ζ2ω − 3δ4λ1ξ − 2δ2ζ1

2ζ2 −
1

6
δ2ζ1ξω − ζ1

3ξ

)
+ σ4

(
δ2ψ4 − 6ζ1λ1 −

ω2

12

)

and

g∼δ
18ξ6

864
+

1

72
σ
(
δ16ζ2ξ

4 + δ14ζ1ξ
5
)

(5.43)

+
1

72
σ2
(
4δ14ζ2

2ξ2 + 8δ12ζ1ζ2ξ
3 + δ12ξ4ω + 7δ10ζ1

2ξ4
)

+
1

216
σ3
(
16δ12ζ2

3+48δ10ζ1ζ2
2ξ+24δ10ζ2ξ

2ω+54δ10λ1ξ
3+120δ8ζ1

2ζ2ξ
2+15δ8ζ1ξ

3ω+70δ6ζ1
3ξ3
)

+
1

144
σ4(32δ8ζ2

2ω+144δ8ζ2λ1ξ − 12δ8ξ2ψ4+96δ6ζ1
2ζ2

2+40δ6ζ1ζ2ξω+216δ6ζ1λ1ξ
2+5δ6ξ2ω2

+ 144δ4ζ1
3ζ2ξ+32δ4ζ1

2ξ2ω+84δ2ζ1
4ξ2)

+
1

36
σ5(−12δ6ζ2ψ4+72δ4ζ1ζ2λ1 − 12δ4ζ1ξψ4+5δ4ζ2ω

2+36δ4λ1ξω+24δ2ζ1
2ζ2ω+180δ2ζ1

2λ1ξ

− δ2ζ1ξω2 + 36ζ1
4ζ2 − 6ζ1

3ξω)

+
1

108
σ6
(
972δ2λ1

2 − 36δ2ψ4ω − 108ζ1
2ψ4 − 108ζ1λ1ω − ω3

)

where σ = 0 defines a section of the P1 fiber of the F-theory base geometry (recall σ = 0

and σ =∞ mark the locations of the symmetry groups arising from each E8 factor).

By group theory alone, the U(1) accompanying the SU(7) in the heterotic theory

should be visible in this limit. How then do we see it? Remarkably, we find that the U(1)

is very much present in this limit! Let us compare once more to the generic two-section

Weierstrass model given in (5.31). We will see that in fact an additional section, and hence

U(1) symmetry has become visible in the entire Weierstrass model of Y (1).

As in section 5.5.1, we must establish the dictionary that puts the coefficients given

in (5.42) and (5.43) into the form necessary for a generic two-section model, (5.31). Here

– 61 –



J
H
E
P
0
4
(
2
0
1
6
)
0
8
0

we find that this correspondence can be achieved by one of two choices. First,

c0 = −1

4
δ6ζ2

2σ
2 + (−ζ2

1ζ2 −
1

2
δ2ζ2ω)σ3 + ψ4σ

4 (5.44)

c1 =
1

2
iδ6ζ2ξσ + i(δ2ζ1ζ2 + ζ2

1ξ +
1

2
δ2ξω)σ2 + 6iλ1σ

3 (5.45)

c2 =
1

4
δ6ξ2 + (−1

2
δ4ζ2 + δ2ζ1ξ)σ −

1

2
ωσ2 (5.46)

c3 =
i

2
δ4ξ + iζ1σ (5.47)

b = −iδ (5.48)

The second choice for a variable change arises from the freedom associated to a Weierstrass

model with Mordell-Weil rank 2 (i.e. the freedom to define which, of the section S1 and it’s

inverse −S1, we choose to call “positive” in the elliptic addition law). The other solution is

c0 =

(
−1

4
δ6ζ2

2 − δ4ζ1ζ2ξ − δ2ζ2
1ξ

2

)
σ2 +

(
−ζ2

1ζ2 −
1

2
δ2ζ2ω − 6δ2λ1ξ

)
σ3 + ψ4σ

4 (5.49)

c1 = i

(
1

2
δ6ζ2ξ + δ4ζ1ξ

2

)
σ + i

(
δ2ζ1ζ2 + ζ2

1ξ −
1

2
δ2ξω

)
σ2 + 6iλ1σ

3 (5.50)

c2 =
1

4
δ6ξ2 +

(
−1

2
δ4ζ2 − 2δ2ζ1ξ

)
σ − 1

2
ωσ2 (5.51)

c3 = − i
2
δ4ξ + iζ1σ (5.52)

b = −iδ (5.53)

Either of these two solutions makes it clear that in the stable degeneration limit, Y (1) has

a non-trivial Mordell-Weil group and a new rational section. Once again, in the stable

degeneration limit and from the section addition law of the elliptic fiber of the dP9 fiber

of Y (1), this U(1) symmetry was expected to arise and it is gratifying to see it manifestly

appear. It only remains then to understand in the F-theory geometry how to understand the

Green-Schwarz massive nature of this Abelian symmetry. We will return to this question

in a following section.

5.5.4 SU(7) matter transitions

For SU(7) it is possible to once again compare the realization of F-theory matter transitions

with heterotic small instanton transitions. From the F-theory geometry in section 3.3, a

matter transition of the form (3.57):

3× + 3× + 8× 1→ Superconformal Matter→ + 8× + 1, (5.54)

is realized by first deforming

ξ → a3ξ′ (5.55)

ζ2 → a4ζ ′2

λ1 → aλ′1

ψ4 → a2ψ′4
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and then tuning further so that the common factor is then absorbed into δ and ζ1:

aδ → δ′ (5.56)

aζ1 → ζ ′1

In the heterotic geometry this should correspond to removing m point-like instantons (tak-

ing a to be a degree m polynomial over P1 above) from either factor of the reducible bundle

L ⊕ U2 in (5.30) and then smoothing them back into a new sum L′ ⊕ U ′2. Let us consider

this from the point of view of the spectral cover given in (5.37):

(
(3ζ2

1 + δ2ω)Z2 − 3δ2X)
)
× (5.57)(

−3

(
1

3
ζ1

2ζ2 −
1

18
ζ1ξω +

1

9
δ2ζ2ω + λ1δ

2ξ

)
Z3 + (ζ2δ

2 + ζ1ξ)XZ − δξY
)

= 0

Recall that this corresponds to the bundle geometry (L ⊕ L∨) ⊕ (L∨ ⊕ U2). Substituting

the tuning of (5.55) into (5.57) above we find a transitional spectral cover

(
(3ζ2

1 + δ2ω)Z2 − 3δ2X)
)
× (a2)× (5.58)(

− 3

(
1

3
(a2)ζ1

2ζ2 −
1

18
(a)ζ1ξω +

1

9
(a2)δ2ζ2ω + λ1(a2)δ2ξ

)
Z3

+ (ζ2(a2)δ2 + (a)ζ1ξ)XZ − (a)δξY

)
= 0

This is precisely of the form required to consistently allow δ and ζ1 to each absorb a factor

of a (as in (5.56)) and return the spectral cover to its canonical form of (5.37) but with

the degrees of the relevant functions shifted.

The remarkable observation to be made is that it is clear from the quadratic terms

in this spectral cover that the only transitions possible are ones which involve a perfect

square vertical factor (a2) as above. That is, the only consistent transitions must involve

an even number of point-like instantons. This exactly matches the observations made in

section 4.2 (and under (4.39)) on the smooth heterotic geometry, even-ness of Chern classes

and the particle content of the SU(7) heterotic theory on K3. Finally it should be noted

that the transition above clearly deforms the dP9-fibered 3-fold Y (1) as well as the class

of the enhanced sections to the elliptic fibrations (with non-trivial Mordell-Weil group) of

the elliptically fibered K3 surface. As a result, its impact on the dual heterotic/F-theory

pair is more substantial than in the case of SU(6) theories.

5.6 SU(8) tuning

In this section, we will repeat the symmetry enhancement analysis described above for

the tuning of SU(7) → SU(8). Once again, we return to the F-theory tuning described in

section 3 for SU(8) gauge symmetry.
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Recall that from section 3.2.3, the tuning taking SU(7)→ SU(8) is given by

ξ = δ2τ (5.59)

ζ2 = δ2ζ3 +
ζ4τ

2

2

ζ1 = ζ4τ

ω = δ2ω1 + 4ζ3ζ4

λ1 = δ2λ2τ −
ζ4τω1

6

ψ4 = δ4φ4 − 6δ2ζ3λ2 −
δ2ω1

2

4
− 3ζ4λ2τ

2

f5 = δ2ψ5 + 2ζ4φ4

g7 =
1

12
(−72δ4λ2φ4 − 4δ4ψ5ω1 − 16δ2ζ3ζ4ψ5 + 16δ2ζ4ω1φ4 + 16ζ3ζ4

2φ4 − 12ζ4
2τ2ψ5

− 4δ6ζ3f6 − 6δ4ζ4f6τ
2 + δ10(−f7)τ2)

and again the “middle” coefficients (f4, g6) will be related (in the stable degeneration limit)

to the heterotic Weierstrass model.

As described in section 5.1, it is clear that the SU(8) symmetry depends on a Weier-

strass model with structure that is spread across both “halves” of the F-theory base geom-

etry and not easily localized on a single patch of the P1 fiber. Unlike in SU(N) heterotic/F-

theory dual pairs with N ≤ 5, care must be taken in the stable degeneration limit.

In order to take the stable degeneration limit described by (5.4), specifying the overall

powers of ε in each Weierstrass coefficient fi, gj is not sufficient. Since f5, g7 are determined

by the functions ξ, ζ2, ζ1, . . . above, it it must further be specified how these functions are

chosen to scale so that f5, g7 → 0 in the ε→ 0 limit.

A Groebner-basis calculation (using [79]) demonstrates that there are three possible

paths to the stable degeneration limit in this case corresponding to

1. ψ5, φ4 → 0

2. ζ4, δ → 0

3.
(
ζ3ψ5

2φ4 − 24λ1φ4
3 − τ2ψ5

3 − 4ψ5ω1φ4
2
)
→ 0

As argued in appendix B, in fact only the first of these paths leads to a smooth K3 surface

in the dual heterotic theory.

Thus, the appropriate limit to take which leads to a smooth, weakly coupled (pertur-

bative) heterotic theory with SU(8) symmetry is

ψ5 → 0 , f6 → 0 , φ4 → 0 , f7 → 0 (5.60)
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In this case then, the form of the SU(8) Weierstrass model of Y (1) is given by

f ∼ − δ20τ4

48
+ σ

(
−1

6
δ16ζ3τ

2 − 1

4
δ14ζ4τ

4

)
(5.61)

+
1

12
σ2
(
−4δ12ζ3

2 − 2δ12τ2ω1 − 20δ10ζ3ζ4τ
2 − 15δ8ζ4

2τ4
)

(5.62)

+ σ3

(
−2

3
δ8ζ3ω1 − 3δ8λ2τ

2 − 8

3
δ6ζ3

2ζ4 − 4δ4ζ3ζ4
2τ2 − 2δ2ζ4

3τ4

)
(5.63)

+ σ4

(
−6δ4ζ3λ2 −

δ4ω1
2

3
− 2

3
δ2ζ3ζ4ω1 − 9δ2ζ4λ2τ

2 − 4ζ3
2ζ4

2

3
+ ζ4

2τ2ω1

)
(5.64)

and

g∼δ
30τ6

864
+σ

(
1

72
δ26ζ3τ

4+
1

48
δ24ζ4τ

6

)
+

1

72
σ2
(
4δ22ζ3

2τ2+δ22τ4ω1+16δ20ζ3ζ4τ
4+12δ18ζ4

2τ6
)

+
1

108
σ3
(
8δ18ζ3

3+12δ18ζ3τ
2ω1+27δ18λ2τ

4+84δ16ζ3
2ζ4τ

2+9δ16ζ4τ
4ω1

+144δ14ζ3ζ4
2τ4+72δ12ζ4

3τ6
)

1

36
σ4(8δ14ζ3

2ω1+54δ14ζ3λ2τ
2+2δ14τ2ω1

2+32δ12ζ3
3ζ4+22δ12ζ3ζ4τ

2ω1+81δ12ζ4λ2τ
4

+116δ10ζ3
2ζ4

2τ2+3δ10ζ4
2τ4ω1+120δ8ζ3ζ4

3τ4+45δ6ζ4
4τ6)

+
1

36
σ5(72δ10ζ3

2λ2+8δ10ζ3ω1
2+36δ10λ2τ

2ω1+40δ8ζ3
2ζ4ω1+360δ8ζ3ζ4λ2τ

2+80δ6ζ3
3ζ4

2

+270δ6ζ4
2λ2τ

4+120δ4ζ3
2ζ4

3τ2 − 30δ4ζ4
3τ4ω1+60δ2ζ3ζ4

4τ4+18ζ4
5τ6)

+
1

108
σ6(216δ6ζ3λ2ω1+972δ6λ2

2τ2+8δ6ω1
3+864δ4ζ3

2ζ4λ2+24δ4ζ3ζ4ω1
2

− 324δ4ζ4λ2τ
2ω1 − 48δ2ζ3

2ζ4
2ω1+648δ2ζ3ζ4

2λ2τ
2+72δ2ζ4

2τ2ω1
2 − 64ζ3

3ζ4
3

+72ζ3ζ4
3τ2ω1 + 324ζ4

3λ2τ
4) (5.65)

A remarkable observation can be made at this stage by considering the coefficients of σ4

in f and σ6 in g above. In this limit, the heterotic K3 surface is defined by

f4 =

(
−6δ4ζ3λ2 −

δ4ω1
2

3
− 2

3
δ2ζ3ζ4ω1 − 9δ2ζ4λ2τ

2 − 4ζ3
2ζ4

2

3
+ ζ4

2τ2ω1

)
(5.66)

g6 =
1

108

(
216δ6ζ3λ2ω1 + 972δ6λ2

2τ2 + 8δ6ω1
3 + 864δ4ζ3

2ζ4λ2 + 24δ4ζ3ζ4ω1
2

− 324δ4ζ4λ2τ
2ω1 − 48δ2ζ3

2ζ4
2ω1 + 648δ2ζ3ζ4

2λ2τ
2 + 72δ2ζ4

2τ2ω1
2 − 64ζ3

3ζ4
3

+ 72ζ3ζ4
3τ2ω1 + 324ζ4

3λ2τ
4
)

(5.67)

which leads to a discriminant locus for the K3 of the form

∆K3 = −
(
−3δ6λ2 + δ4ζ4ω1 + 2δ2ζ3ζ4

2 + ζ43τ2
)2

×
(
96ζ3

3λ2 + 4ζ3
2ω1

2 − 108ζ3λ2τ
2ω1 − 243λ2

2τ4 − 4τ2ω1
3
)

(5.68)

Inspection of this discriminant leads us to an immediate and important observation. As

we have constructed this SU(8) solution thus far, it is clear that the discriminant in (5.68)
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is generically singular. As a result, the generic heterotic dual of the SU(8) F-theory Weier-

strass model defined in (5.59) must be generically non-perturbative. But from section 4.1.3

it is clear that perturbative SU(8) heterotic theories do exist. It is natural to inquire then,

under what circumstances could we find a perturbative heterotic dual to (5.59)? By inspec-

tion of (5.68) it is clear that the K3 surface will be singular unless the first quadratic factor

in the determinant is in fact a constant. Consulting table 5, the degrees of the functions

appearing in this term are given by

δ λ2 ζ4 ω1 ζ3 τ

degree r
2 4 + r − n 3r − n 4− r n+ 4− 3r n+ 2− 5r

2

(5.69)

Thus, the quadratic factor
(
−3δ6λ2 + δ4ζ4ω1 + 2δ2ζ3ζ4

2 + ζ43τ2
)2

in (5.68) will be a

(generically non-zero) constant if 4(r + 1) = n. In this section r = 2r8 and thus the

non-trivial condition on the spectrum is that

4(2r8 + 1) = n (5.70)

which is precisely the integer restriction seen to determine the topology of the bundles

V = L ⊕ L∨ in section 4.1.3! (See (4.15) and the following equations for the restricted

spectrum.) As a result, we see a perfect correspondence between those SU(8) F-theory

solutions which have a perturbative heterotic dual, as well as the origin of generically

non-perturbative heterotic duals with singular K3 surfaces.

All that remains is to match the spectral cover associated to the tuned complex struc-

ture in (5.59) to the bundle geometry given in section 4.1.3. What do we expect to happen

to the spectral cover in this case? From the bundle analysis in section 4.1.3, we expect the

S[U(2) × U(1)] bundle from (5.30) to decompose further into a sum of line bundles with

structure group S[U(1) ×U(1)] as

L ⊕ U2 → L⊕ (L ⊕ L∨⊗2
) (5.71)

In the spectral cover then, one must once again consider the possible overlapping of roots

for the order 2 component. Under the tuning given in (5.59) the SU(7) spectral cover

of (5.38) specializes further to

(
(3(ζ4τ)2 + δ2(δ2ω1 + 4ζ3ζ4))Z2 − 3δ2X

)
× (5.72)(

1

3

(
δ2ζ3 +

ζ4τ
2

2

)
Z
(
(3ζ4τ

2 + δ2(δ2ω1 + 4ζ3ζ4))Z2 − 3δ2X
)

+ δ2τ

[
−3

(
− 1

18
(ζ4τ)(δ2ω1 + 4ζ3ζ4) + δ2

(
δ2λ2τ −

ζ4τω1

6

))
Z3 + ζ4τXZ − δY

])
= 0

The essential structure of the enhanced Mordell-Weil group of both the heterotic K3

surface and Y (1) are both preserved in the present case. For the K3 geometry, on the patch
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Z = 1, the rational section is now defined by[
X →

δ2
(
δ2ω1 + 4ζ3ζ4

)
+ 3ζ4

2τ2

3δ2
,

Y → −
1
2δ

2ζ4τ
(
δ2ω1 + 4ζ3ζ4

)
− 3δ4

(
δ2λ2τ − ζ4τω1

6

)
+ ζ4

3τ3

δ3
, Z → 1

]
(5.73)

In order to make the correspondence between (5.71) and (5.72), we need to demonstrate

that if the line bundle L corresponds to the rational section S1, then −2S1 (corresponding

to L∨⊗2) is now a root of (5.71). Given the rational section, S1 in (5.73), we need first

to determine the coordinates of −2S1 under the addition law of the elliptic fiber. This

addition is reviewed in appendix A. Using these standard techniques, −2S1 can be found

to correspond to the points on the fiber given by[
X → δ2ζ3

2

τ2
+
ζ4

2τ2

4δ2
− 1

3
2δ2ω1 +

ζ3ζ4

3
, (5.74)

Y →
8δ6

(
ζ3

3 − ζ3τ
2ω1 − 3λ2τ

4
)

+ 4δ4ζ4τ
2
(
ζ3

2 − τ2ω1

)
− 2δ2ζ3ζ4

2τ4 − ζ4
3τ6

8δ3τ3
,

Z → 1

]
Finally, then it is possible to substitute this point into the spectral cover given by (5.72)

and verify that it vanishes identically. Thus, as expected, the vector bundle has reduced

to two copies of the rational section S1 and one of −2S1 which corresponds exactly to the

required bundle geometry: L ⊕ (L ⊕ L∨⊗2).

As pointed out in section 4.2, due to the restricted spectrum imposed by the condition

for a smooth K3 manifold, (5.70) matter transitions are not possible in this stable degen-

eration limit. If we allow for singular K3 surfaces the analysis is of the same form as those

for SU(7) given in section 5.5.4 above.

We turn now to other Higgsing transitions in the language of spectral covers.

5.7 Higgsing on antisymmetric matter

In this section we briefly review the deformations of spectral covers corresponding to Hig-

gsing on antisymmetric matter in the SU(6), SU(7) and SU(8) theories described in the

previous sections. Such Higgsing chains are surprisingly simple in the language of spectral

covers

Consider a heterotic gauge bundle V = V1⊕V2 with reducible structure group G1×G2.

As discussed above, this can be described via a (possibly further reducible) spectral cover

with structure group SU(n)× SU(m):

S1 ∪ S2 = (a0Z
n + . . . anX

n
2 )(b0Z

m + . . . bmX
m−3

2 Y ) (5.75)

(illustrating here the case where n is even and m is odd).

Then Higgsing on an antisymmetric tensor field corresponds to non-trivial deformations of
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either

V1 ⊕OK3 → V ′ (5.76)

or

V2 ⊕OK3 → V ′ (5.77)

In the language of spectral covers, these deformations correspond to

S1 → (a0Z
n+1⊕. . . anY+an+1X

n−2
2 Y ) or S2 → (b0Z

m+1⊕. . . bmY+bm+1X
m+1

2 ) (5.78)

controlled by the coefficients an+1 and bm+1 respectively.

5.8 Comments on Green-Schwarz massive U(1)s

The nature of the Green-Schwarz massive U(1) symmetries of the previous section pro-

vides an intriguing puzzle in heterotic/F-theory duality. In the heterotic theory, the U(1)

symmetries are required by the group theory of E8 subgroups alone. The fact that they

generically become massive arises from a separate field theory mechanism: namely the

transformation of Kähler axions under U(1) shift symmetries. Since the U(1) symmetry

is clearly visible in the Weierstrass model of Y (1) in the stable degeneration limit (5.2) it

is natural to ask: how can we understand the origin of its mass term in F-theory? While

we leave a systematic study of this question to future work, for now we simply raise two

possibilities:

1. In 6-dimensional compactifications of F-theory the presence of massless U(1) sym-

metries is controlled by the structure of the Mordell-Weil group of Y , the CY 3-fold.

Since in all the cases studied here the U(1) is present only in “half” the geometry

(Y (1)), one should not view this as generating a massless U(1). This agrees with the

analysis of [78]. In particular only in the limit where ε = 0 would this become truly

massless. To some extent this agrees with the expectation in the heterotic theory

since the non-trivial mass terms scale as 1/(Kahler modulus) [49] and in the limit of

strictly infinite volume these would vanish.

2. The geometric origin of the heterotic U(1) mass term is separate from the group

theory of the elliptic fibration. Thus, it is possible that in F-theory the mass originates

(even in 6-dimensions) from a source entirely separate to the holomorphic geometry

of Y (i.e. a “Stuckelberg” mechanism [71, 73–75]).

The clarification of these possibilities is an intriguing area to study further. For now, though

we make one final observation: it should be noted that the presence of U(1) symmetries in

the stable degeneration limit is itself a subtle thing.5 We give a brief illustration of some

of the uncertainty that may arise in appendix C.

5While this paper was in the final stages of preparation we became aware of the work of [78] which is

also focused on the question of massless and Green-Schwarz massive U(1) symmetries in heterotic/F-theory

duality and has some overlap with the content of this section and appendix C.
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6 Matter transitions in other gauge groups

In the preceding sections we have focused on matter transitions involving gauge groups

SU(N) with N = 6, 7, 8 and 3-antisymmetric (Λ3) representations. There are a variety of

other situations where similar transitions can occur. Here we explore a few such cases,

particularly those related to the SU(N) Λ3 matter transitions. These include models with

Sp(3) and SO(12) gauge groups, and a class of SU(3) transitions involving matter in the

symmetric representation, where there is an intricate structure to the Weierstrass model

similar to that found recently in [80]. The existence of distinct families of Sp(3), SO(12),

and SU(3) models with varying matter content was recognized in [14]; we explore here the

explicit connection of these models through matter transitions and comment on general-

izations to other related models.

6.1 Sp(N) matter transitions

6.1.1 Field theory

While breaking an SU(N) theory on a pair of k-index antisymmetric representations gives

a theory with gauge group SU(N − k) × SU(k), it is also possible to Higgs SU(2k) on a

single Λ2 representation, giving the breaking

SU(2k)→ Sp(k) . (6.1)

In this case, the Higgs field takes the VEV Φ = J , where J is the antisymmetric matrix

defining Sp(N) through [h, J ] = 0 for h ∈ SU(N). For SU(6), this breaking gives a branch-

ing of representations 20 → 14′ + 6 and 15 → 14 + 1. The SU(6) blocks (2.14) thus are

Higgsed to Sp(3) blocks

(16 + 2n+ 3r/2)× 6 + (r/2)× 14′ + (1 + n− r)× 14 . (6.2)

The transition (2.9) becomes a transition between Sp(3) representations

1

2
14′ +

3

2
6↔ 14 + 2× 1 . (6.3)

Similarly, for SU(8) there is a breaking

SU(8) → Sp(4) (6.4)

56 → 48 + 8 (6.5)

28 → 27 + 1 (6.6)

8 → 81 , (6.7)

from which we expect an Sp(4) transition that follows from (2.11)

48 + 10× 8↔ 4× 27 + 20× 1 . (6.8)

Note that the 70 of SU(8) branches to 42 + 27 + 1, so we would expect SU(8) with a Λ4

representation to break to an Sp(4) with a matter field in the 42 representation.
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Representation Cohomology Multiplicity

14′ H1(V2) c2(V2)− 4

6 H1(V2 ⊗ V ′2) 7c2(V2) + 2c2(V ′2)− 28

14 H1(V ′2) c2(V ′2)− 14

1 H1(End0(V2))⊕H1(End0(V ′2)) (4c2(V2)− 6) + (4c2(V ′2)− 28)

Table 20. The cohomology associated to each representation of the low-energy gauge group Sp(3).

6.1.2 F-theory

From the F-theory point of view, the Sp(k) and SU(2k) models are very closely related.

Both come from a Kodaira type Ik singularity, the only difference is whether it is a “split”

type singularity or not. At the level of the Weierstrass model, the Higgsing is achieved

by allowing φ2
0 to deform into an irreducible polynomial φ in the tunings of section 3.2.

This deformation must be associated with an analogous deformation of α, β in (3.10).

Specifically, α2 is allowed to deform into the irreducible polynomial h, while β is unchanged.

With this modification, all the tuning, transition, and Higgsing analysis for SU(6) goes

through unchanged for Sp(3). The story would be more complicated for SU(8), where α

and β themselves are decomposed into further components.

6.1.3 Heterotic description

From the heterotic point of view the Sp(N) matter transitions can be computed using

techniques similar to those in section 4. Looking at the Sp(3) case as an example, the

relevant group theory is as follows.

E8 ⊃ Sp(3)× SU(2)×G2 (6.9)

248 = (1,3,1) + (21,1,1) + (14′,2,1) + (6,2,7) + (14,1,7) + (1,1,14) (6.10)

We denote the SU(2) gauge bundle by V2 and the G2 gauge bundle by V ′2. We then have

the correspondence between representations and cohomologies, and derive from this the

multiplicities of matter representations, as given in table 20.

Computing the total number of hyper multiplets from the data in table 20 we obtain

the familiar anomaly cancelation condition.

nH + 29nT − nV = 273 (6.11)

⇒ c2(V2) +
1

2
c2(V ′2) +

1

60
c2(End0(VE8)) = 24

From equation (6.11) and table 20 we see that the following matter transition between

full hypermultiplets is possible upon small instanton transition (recalling that all of the

representations involved are real).

1

2
× 14′ +

3

2
× 6↔ ×14 + 2× 1 (6.12)

This is precisely of the form (6.3) expected from field theory considerations.
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6.2 SO(N) models

There are two ways in which SO(N) models may exhibit transitions like those described

for SU(N) groups in the earlier sections. One is for SO(N) models with matter in the

analogue of the Λ3 representation. For example, for SO(12), which has the self-conjugate

spinorial representations 32 and 32′, there are blocks

(r/2)× 32 +
4 + n− r

2
× 32′ + (n+ 8)× 12 , (6.13)

and associated transitions
1

2
32↔ 1

2
32′ . (6.14)

These representations branch to the representations in the SU(6) transition (2.9) under

the embedding SU(6) ⊂ SO(12). In the F-theory picture this transition follows much

like the SU(6) transition, and can be constructed by taking α → 0 in the general SU(6)

tuning (3.16), (3.17). The 1
232 and 1

232′ representations are respectively given by the

loci β = σ = 0 and ν = σ = 0, and the transition involves transferring factors between

ν, λ and β, φ2. Like the previous transitions considered, the SO(12) transition involves

passing through a superconformal point. In the heterotic picture the SO(12) models can

be constructed by taking an E8 bundle with structure group SU(2) × SU(2), as explained

in section 5.3. These models, and similar constructions for SO(14), etc. are similar in

principle to the models already considered, with similar features on both the F-theory and

heterotic sides when applicable.

The heterotic picture, however, suggests another kind of SO(N) transition that may

occur when we construct bundles with a product structure group for the SO(32) theory.

For example, consider a SO(32) heterotic compactification on K3 in the presence of a gauge

bundle with SO(6) × SU(2) structure group. First we need the appropriate group theory.

SO(32) ⊃ SO(22)× SU(2)× SO(6)× SU(2) (6.15)

496 = (231,1,1,1) + (22,1,6,1) + (1,1,15,1) + (22,2,1,2)

+(1,2,6,2) + (1,3,1,1) + (1,1,1,3)

We will take the last two factors above to be those associated to the gauge bundle. In

particular we will describe the situation in terms of a SU(4) vector bundle V1 and an SU(2)

bundle V2. We are using an SU(4) rather than SO(6) structure group for ease of description.

We must account for this, however, in matching cohomologies to representations in the

decomposition (6.15) with the relevant cohomologies for determining matter multiplicities,

which are presented in table 21.

The anomaly cancellation condition nH + 29nT − nV = 273 results in the following

condition in this case

c2(V1) + c2(V2) = 24 . (6.16)

Equation (6.16) is of course simply the 10D anomaly cancellation condition as it should be.
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Representation Cohomology Multiplicity

(22,1) H1(∧2V1) 2c2(V1)− 12

(22,2) H1(V2) c2(V2)− 4

(1,2) H1(∧2V1 ⊗ V2) 4c2(V1) + 6c2(V2)− 24

(1,1) H1(End0(V1))⊕H1(End0(V2)) 8c2(V1)− 30 + 4c2(V2)− 6

Table 21. The cohomology associated to each representation of the low-energy gauge group

SO(22)× SU(2).

Using (6.16) and table 21, we see that, in terms of full multiplets, the following kind

of matter change can be implemented by small instanton transitions.

(22,1) + 2× (1,1)↔ 1

2
(22,2) + (1,2) (6.17)

But small instantons behave differently in SO(32) theories than in E8×E8 theories. Unlike

the superconformal points of the E8×E8 models discussed earlier, the SO(32) small instan-

ton point leads to a new SU(2) symmetry that can be analyzed with field theory [66]. The

SO(22) × SU(2) transition can therefore be understood completely in terms of Higgsing

and unHiggsing transitions (see also [81, 82] for matter transitions of a similar nature), as

can be seen in its F-theory realization.

The matter content of table 21 suggests an F-theory compactification with base F4

where the SO(22) symmetry is tuned on a curve u = 0 of divisor class S. In fact, F-theory

models dual to SO(32) heterotic string theory can only be realized on F4 [83]. Meanwhile,

the SU(2) symmetry should be tuned on a curve σ = 0 of divisor class S + (4 + r)F , with

r = c2(V2) − 4 denoting the number of (22,2) half-multiplets. The global Weierstrass

model is then

y2 = x3 +

(
− 1

48
Φ2u2 + F1σu

6

)
x+

(
1

864
Φ3u3 − 1

12
F1Φσu7 + γ2

2σ
2u10

)
. (6.18)

Φ, F1, and γ2 are respectively sections of O(3S+ 12F ), O(S+ (20− r)F ), and O(14− r)F .

For a transition where r increases, F1 and γ2 develop a common factor a that is a

section of O(F ) (F1 → aF1, γ2 → aγ2). a is then absorbed into σ (aσ → σ′), and the

divisor class of σ = 0 changes from S̃ + rF to S̃ + (r + 1)F . Immediately after absorbing

a, σ is a reducible curve. σ can then be deformed into a non-reducible curve, completing

the transition. To perform the transition in the reverse direction, we let σ become aσ and

reabsorb a into F1 and γ2 (i.e. aF1 → F1
′ and aγ2 → γ2

′).

At the transition point, there is an additional I2 singularity on the a = 0 locus,

signaling the expected appearance of a new SU(2) symmetry. We will refer to this new

symmetry as SU(2)a to distinguish it from the original SU(2) tuned on σ = 0. There is

also matter charged under SU(2)a, as a = 0 intersects the curves u = 0 and σ = 0 once.

In terms of the SO(22) × SU(2) × SU(2)a representations, this charged matter consists of

a half-multiplet of (22,1,2a) matter and a full (1,2,2a) multiplet; the a subscript is used
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to identify the SU(2)a representations. The two sides of the transition correspond to the

two ways of Higgsing SU(2)a. Giving a VEV to the (1,2,2a) multiplet merges to the two

SU(2) symmetries into a single, diagonal SU(2), and the (22,1,2a) half-multiplet reduces

to a half-multiplet of bifundamental (22,2) matter. But when the (22,1,2a) half-multiplet

is given a VEV, SU(2)a is Higgsed separately from the original SU(2). As a result, the

(22,1,2a) half-multiplet is left as a full (22,1) multiplet. Tracking the matter fully, the

total transition can be summarized as

(22,1) + 2× (1,2) + 3× (1,1)↔ 1

2
(22,2) + 3× (1,2) + 1× (1,1), (6.19)

reproducing the net matter change of equation (6.17). Even though the transition consists

only of Higgsing and unHiggsing transitions, the fact that 29 multiplets participate in

the transition suggests a parallel structure to the matter transitions mediated through

superconformal points, which may reflect the underlying small-instanton behavior.

A plethora of exotic transitions of this type are possible in different compactifications

of the SO(32) heterotic string. As in the SO(22) × SU(2) model, these transitions should

be described by phenomena accessible from field theory.

6.3 SU(3) with symmetric matter

A particularly interesting set of exotic matter representations are the representations of

SU(N) that have Young diagrams with more than one column. As described in [13], there

is a natural quantity g associated with any representation R of a simple Lie group G

that plays the role of a “genus” of the representation. The geometric interpretation of

this quantity is conjectured to be that when g > 0, for any representation other than the

adjoint, the representation R is realized in F-theory through a Kodaira singularity on a

divisor D that is itself singular, where g represents the arithmetic genus contribution of

the singularity to the curve D in the 6D case. This correspondence works most simply for

the symmetric representation of SU(N), which has g = 1, and which can be realized on a

double point singularity of D as first suggested by Sadov [84], described further in [5], and

recently confirmed through an explicit F-theory construction [80]. The explicit F-theory

construction of the symmetric matter representation of SU(3) has the unusual feature that

the Weierstrass model cannot be built from a standard generic Tate SU(3) construction;

rather, the vanishing of the discriminant to order 3 follows from a nontrivial cancellation

that involves the explicit algebraic structure of the singular divisor locus carrying the SU(3)

gauge group. Understanding matter transitions in this context gives further insight into

this story.

We can realize a symmetric representation of SU(3) by breaking Sp(3) into SU(3), or

more directly by breaking SU(6) into SU(3) × SU(3) and then breaking

SU(3)× SU(3)→ SU(3) (6.20)

by Higgsing a bifundamental field. The anomaly equivalent matter representations in the

resulting theories exchange an adjoint (plus a singlet) with a symmetric and an antisym-

metric matter representation

8 + 1↔ 6 + 3 . (6.21)
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Figure 2. Higgsing chain involving SU(6), Sp(3), SU(3)× SU(3), and SU(3) along with associated

Dynkin diagrams. Dotted lines indicate nodes exchanged under monodromy. The Higgsing chain

involves two types of F-theory deformations that either introduce monodromy or remove the central

node in the Dynkin diagrams. The SU(3) singularity occurs when both types of deformations are

performed.

Thus, the generic SU(3) model with g adjoints and b · b = n (2.13) has anomaly equivalent

variations

(g − r)8 + r6 + (18 + 6n− 18g + r)3 . (6.22)

In F-theory,6 the Higgsing chain for SU(6), Sp(3), and SU(3) × SU(3), illustrated in

figure 2, involves two distinct deformations. SU(6) is Higgsed to SU(3)×SU(3) by removing

the central node in the A5 Dynkin diagram. Meanwhile, the Sp(3) model is produced by

introducing monodromy effects in the SU(6) model that cause a Z2 folding of the A5 Dynkin

diagram. The SU(3) symmetry is produced by applying both deformations to SU(6). One

can think of the SU(3) singularity as consisting of two A2 singularities that are mapped

onto each other through the monodromy-induced Z2 folding. Thus, the two SU(3) algebras

in the SU(3)× SU(3) product model reduce to a single SU(3) algebra.

For an explicit construction of SU(3), consider an F-theory compactification with base

Fm and an SU(6) singularity tuned on a curve σ = 0 of divisor class S̃. Using a strategy

similar to that of section 3.4.3, the SU(6) symmetry can then be Higgsed to SU(3)×SU(3),

with the two SU(3) singularities tuned on the curves

σ ± αε1
2

= 0.

This situation could be thought of as a single A2 singularity tuned on the reducible curve

σ2 − α2ε21
4

= 0 ;

6Here, we essentially describe the F-theory realization of the level-two SU(3) (or SU(3)2) discussed

in [14]. However, our notation differs slightly. We take n to refer to b · b or the self-intersection number

of the curve with the SU(3) singularity; in [14], n refers to the base Fn. r is also smaller by 2 in our

conventions.
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since this curve can be reduced into the product of two components, it actually repre-

sents two distinct SU(3) algebras. The reducible curve can then be smoothed into a non-

factorizable quadratic polynomial in σ, thereby reducing the product group to a single

SU(3). Specifically, α always appears in even powers in the SU(3) × SU(3) Weierstrass

model, so α2 can be consistently replaced with a parameter h. Note that this deformation

is the same as that for the SU(6)→ Sp(3) Higgsing process described earlier. Assuming that

neither h nor ε1 is constant, the A2 singularity is now tuned on the non-factorizable curve

σ2 − hε21
4

= 0, (6.23)

so the resulting gauge algebra is a single SU(3) tuned on the divisor class 2S̃. The corre-

sponding Weierstrass model has

f = − 1

48

(
hβ2 + ε21ν

2 + 4βνσ
)2
− 1

6

(
9ε21λν + hβφ2 + (18βλ+ 2νφ2)σ

)(
σ2 − hε21

4

)
+
(
f4 + f5σ

)(
σ2 − hε21

4

)2
+O

(
σ2 − hε21

4

)3
(6.24)

and

g =
1

864

(
hβ2 + ε21ν

2 + 4βνσ
)3

+
1

72

(
hβ2 + ε21ν

2 + 4βνσ
)(

9ε21λν + hβφ2 + (18βλ+ 2νφ2)σ
)(
σ2 − hε21

4

)
+

1

36

(
81ε21λ

2 + hφ2
2 + 36λφ2σ − 3(f4 + f5σ)(hβ2 + ε21ν

2 + 4βνσ)
)(
σ2 − hε21

4

)2

+O
(
σ2 − hε21

4

)3
(6.25)

Taking the ε1 → 0 limit recovers the Sp(3) model, even though the Sp(3) model was

never directly used to find the SU(3) Weierstrass tuning. This fact confirms that our SU(3)

tuning agrees with the Higgsing chain given in figure 2, as we could reach the Sp(3) model

indirectly via SU(3)×SU(3) and SU(3). Moreover, we can directly see that the monodromy

“inherited” from the Sp(3) model is crucial in the SU(3) tuning. The SU(3) singularity

could alternatively be thought of as two A2 singularities tuned on the two curves

σ ± h1/2ε1
2

= 0.

However, the curves would interchange under the transformation h → e2πih, the same

transformation involved in the Sp(3) monodromy, and the two A2 subdiagrams should be

identified with one another. We are therefore left with a single SU(3) algebra, with the

h→ e2πih transformation providing the Z2 folding depicted in figure 2.

Turning to the matter content, a curve with divisor class 2S̃ has a genus g given by

g = 1 +
1

2

(
2S̃
)
·
(
KB + 2S̃

)
= m− 1. (6.26)

– 75 –



J
H
E
P
0
4
(
2
0
1
6
)
0
8
0

The SU(3) model therefore has a total of m − 1 charged multiplets in either the adjoint

or symmetric representation. Distinguishing between the two representations requires ex-

amining the two possible sources of double point singularities in the 2S̃ curve: double

point singularities that can be deformed away contribute adjoint (8) matter, whereas non-

deformable double point singularities gives one (6) multiplet and one fundamental (3)

multiplet. The situation is the Higgsed version of a similar feature in the SU(3) × SU(3)

model, where there are subtle differences between the (3, 3̄) and (3, 3̄) bifundamental repre-

sentations [5]. There, the distinction between the two bifundamental representations does

not have significant physical implications. But upon Higgsing to SU(3), the two bifunda-

mentals branch to dramatically different representations, turning into either 8+1 or 6+3.

From an F-theory perspective, monodromy identifies the nodes of the two A2 subdiagrams

in a particular way. With this identification, the redefinitions of the gauge algebras that

made the bifundamental representations essentially equivalent are no longer valid.

We can now find the specific double-point singularities that contribute symmetric mat-

ter. h can have perfect square factors that lead to double point singularities. But since

h is not required to have any perfect square factors, such double points can be deformed

away by modifying the form of h. These double point singularities therefore contribute

localized adjoints. The zeroes of ε1 lead to double point singularities as well, but these

double points cannot be removed by simply deforming one of the free parameters. Letting

r be the order of ε1, ε1 contributes r multiplets of (6) matter and r fundamental mul-

tiplets. To find the additional fundamentals provided by the discriminant loci, it is easiest

to expand the discriminant around σ± 1
2h

1/2ε1. When expanded around σ+ 1
2h

1/2ε1, there

are 3m + 18 codimension two loci where the discriminant vanishes to order 4; there are

the same number of loci when the discriminant is expanded around σ − 1
2h

1/2ε1. A total

of 6m + 36 fundamentals therefore come from the discriminant. Considering all of these

contributions, the SU(3) models have r 6 multiplets, m−1−r 8 multiplets, and 6m+36+r

3 multiplets. Noting that 2S̃ has self-intersection number n = 4m and genus g = m − 1,

this is in agreement with (6.22).

It is tempting to transfer factors from h to ε1 in order to systematically introduce non-

deformable double-point singularities. If this were possible, we could transform adjoint

matter into symmetric matter. However, there are terms in the Weierstrass model of

equations (6.24) and (6.25) that depend on ε1 and not on h, or vice versa. The only

consistent way to transfer factors from h to ε1 is to use a matter transition similar to

that of SU(6), which requires moving through a superconformal point. Suppose we wish

to convert an adjoint 8 multiplet to a 6 multiplet (along with other fundamentals and

singlets). Just as in the SU(3) × SU(3) transition, h,ν, and λ develop common factors:

h→ a2h′, (6.27)

ν → aν ′, (6.28)

λ→ aλ.′ (6.29)

Note that there is now superconformal point at the locus a = σ = 0. ε1, β, and φ2 then
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absorb the common factor:

aε1 → ε′1, (6.30)

aβ → β,′ (6.31)

aφ2 → φ′2. (6.32)

We have thus introduced a non-deformable double point singularity through the matter

transition. Overall, the transition is summarized as

Adj + 6× + 3× 1→ Superconformal Matter→ + 7× + 2× 1, (6.33)

giving a net matter change of

Adj + 1→ + . (6.34)

Note the usual appearance of 29 matter fields in the spectrum on each side of the full

transition (6.33).

Finally, we note that the Weierstrass model of equations (6.24) and (6.25) has a “non-

Tate” structure. The SU(3) tuning cannot be written in the generic SU(3) form given

in [5]. Instead, the curve with the A2 singularity has a specific structure that depends

on variables used in the tuned Weierstrass coefficients. The coefficients then conspire to

ensure all terms in the discriminant are proportional (σ2 − hε21
4 )3. But for the special case

with no symmetric matter, the SU(3) tuning can be written in the standard form. If r = 0,

ε1 is a non-zero constant, and we can set ε1 to 1 without loss of generality. With this

simplification, f and g can be rewritten as

f =
−1

48
Φ4

0 +
1

2
Φ0Ψ0

(
σ2 − h

4

)
+ F2

(
σ2 − h

4

)2
+O

(
σ2 − h

4

)3
, (6.35)

g =
1

864
Φ6

0 −
1

24
Φ3

0Ψ1

(
σ2 − h

4

)
+

(
Ψ2

1

4
− 1

12
F2Φ2

0

)(
σ2 − h

4

)2
+O

(
σ2 − h

4

)3
, (6.36)

where

Φ0 = ν + 2βσ, (6.37)

Ψ1 = −3λ− 2

3
φ2σ +

1

3
β2Φ0, (6.38)

F2 = f4 + f5σ −
1

3
β4 +

2

3
βφ2. (6.39)

In fact, equations (6.35) and (6.36) are in the standard SU(3) forms given in [5].

This behavior parallels that observed in the SU(3) models derived in [80]. There,

all of the higher-genus SU(3) models with symmetric matter had non-Tate structures.

The construction presented here further supports the idea that non-Tate structures are

necessary for symmetric matter; indeed, our models can only be expressed in standard

forms for exactly those cases without symmetric matter. However, our SU(3) tuning seems

to be different from the tuning given in [80]. The connection between these classes of

models is left as a question for future investigations.
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Representation Cohomology Multiplicity

1 H1(End0(V2))⊕H1(End0(V3)) (4c2(V2)− 28) + (6c2(V3)− 16)

3 H1(V2 ⊗ V∨3 ) (3c2(V2) + 7c2(V3)− 42)

3 H1(V2 ⊗ V3) (3c2(V2) + 7c2(V3)− 42)

6 H1(V3) c2(V3)− 6

6 H1(V∨3 ) c2(V3)− 6

8 H1(V2) c2(V2)− 14

Table 22. The cohomology associated to each representation of the low-energy gauge group SU(3).

Matter transitions in SU(3) models with symmetric matter can also be realized within

the heterotic context. The relevant group theory in this instance is as follows.

E8 ⊃G2 × SU(3)× SU(3) (6.40)

248 = (14,1,1) + (7,8,1) + (1,8,1)+(1,1,8)+(7,3,3) + (1,6,3)+(7,3,3) + (1,6,3)

We denote the G2 gauge bundle by V2 and the SU(3) gauge bundle by V3. It should

be noted that we choose the second of the two SU(3)’s to be associated with the bundle

structure group. We then have the multiplicities of representations in the six-dimensional

theory given in table 22.

The anomaly cancelation condition in this case gives the relations

nH + 29nT − nV = 273 (6.41)

⇒ 1

2
c2(V2) + c2(V3) +

1

60
c2(End0(VE8)) = 24 . (6.42)

Equation (6.42) is of course simply the 10D anomaly cancelation condition as one would

expect.

Given equation (6.42) and the matter multiplicities given in table 22 we arrive at the

following matter transition induced by small instanton transitions in ten dimensions.

1 + 8↔ 3 + 6 (6.43)

This is exactly of the form given in equation (6.21) in the six-dimensional field theory

discussion.

7 Conclusions

7.1 Summary of results

Novel matter transitions. We have identified a new class of field theory transitions

through which matter fields in one set of representations transform into matter fields in

another set of representations without changing the gauge group. We have explicitly de-

scribed these transitions in 6D models where the field theory is coupled to gravity, from
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Figure 3. The matter transitions studied in this paper can be seen as arising along one-parameter

families of theories, with the transition point at ε̂ = 0, and field theories with the same gauge group

but distinct matter representation content at ε̂ > 0 and ε̂ < 0. For these matter transitions in 6D

theories, the transition point at ε̂ = 0 is a superconformal field theory, from which an additional

tensor branch generally extends, as well as separate branches for each of the field theories with

distinct matter contents, though the tensor branch is incidental to the matter transition. The

matter representations shown are for the simplest (SU(6)) matter transition.

both the heterotic and F-theory perspectives. These pictures match, and agree with con-

straints from gauge and gravitational anomaly conditions in 6D. In both pictures these

transitions involve passing through a superconformal fixed point (figure 3), at which an

infinite family of light fields appear and the simple perturbative low-energy field theory

picture breaks down. Similar transitions should be possible in 4D theories, though in some

cases may be obstructed by a superpotential (see section 7.2). The simplest example we

have studied is the transition between a matter field in the three-index antisymmetric (Λ3)

representation of SU(6), along with a fundamental ( 1
220 + 6) to a two-index antisymmetric

representation and a singlet (15 + 1). Similar transitions occur for other groups such as

SU(7), Sp(3), SO(12), and SU(3).

Heterotic picture. In the heterotic picture, these transitions occur by moving an in-

stanton between different simple factors in the structure group of a single E8 bundle, such

as SU(3) × SU(2) in the SU(6) Λ3 case. Such transitions had not been previously explored

systematically in heterotic theories. Several novel features arise in these heterotic models.

For the SU(7) and SU(8) models with Λ3 matter, the necessary bundles are only possible

for a fixed subset of the moduli space of K3 compact spaces, giving a nontrivial coupling

between bundle and complex structure moduli of the K3 surface. We find a new form of the

stable degeneration limit in these cases. The SU(7) construction also leads to an increased

Mordell-Weil rank on one side of the stable degeneration limit, associated with a massive

U(1) field in the low-energy theory.

F-theory picture. In the F-theory picture, we have an explicit description of these

transitions in terms of Weierstrass models. At the transition points between models with

different representations, codimension two singular loci L develop in the Weierstrass model

where f and g vanish to orders 4 and 6, signaling SCFTs in the low-energy theory. Matter

transitions occur when the Weierstrass model moves from one branch to another without

changing the geometry of the compactification base B. Tensionless string transitions, on
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the other hand, are associated with a blowup of the locus L and a corresponding change

in the topology of the base B that in 6D changes the number of tensor multiplets. The

Weierstrass models for all theories with non-generic matter representations (e.g., for SU(N)

anything but the fundamental, Λ2 and adjoint representations) are realized in a way that

is not captured by the simple general Tate form for the associated gauge group.

Heterotic/F-theory duality. In our analysis we have carried out a careful matching of

the degrees of freedom in the spectral cover construction of the heterotic bundles with the

parameters in the F-theory Weierstrass model. Matching these parameters gives a clear pic-

ture of the duality between these classes of models and illuminates many features such as the

appearance of SCFTs at the transition points and the matching of constraints between the

two pictures. We view this work as important first step into extending heterotic/F-theory

duality to include more complex and phenomenologically relevant Calabi-Yau geometries

and vector bundles (including, for example the geometries in [85–88] which involve bundles

with reducible structure groups and Green-Schwarz massive U(1) symmetries).

Higgsing deformations. In the process of constructing models with transitions, we have

discussed the F-theory and heterotic manifestations of a variety of Higgsing processes. On

the F-theory side, this analysis involved identifying explicit Weierstrass deformations for

particular Higgsing processes, For instance, our analysis has described the F-theory de-

formations that correspond to giving VEVs to antisymmetric representations of SU(N).

Examining the Higgsing connections between different models clarified how the transitions

are related by Higgsing and allowed us to investigate transitions in product group mod-

els. Moreover, the explicit F-theory deformations illuminate how the F-theory degrees of

freedom correspond to those of the low-energy theory, at least in six dimensions. Further

investigations into Higgsing deformations could help to develop a more explicit dictionary

between F-theory, the heterotic effective theory, and their low-energy limits.

Higher genus matter. An interesting subject of study in recent work is the appearance

of “higher genus” matter in 6D supergravity theories. Each representation R of a group G

can be associated with a genus contribution g, which in F-theory should have the interpre-

tation of an arithmetic genus contribution from a singularity in the divisor supporting the

gauge factor G. We have found an explicit example of such a realization in models with

the symmetric (6) representation of SU(3). These models are connected through a matter

transition to other models with an adjoint representation, but are realized, as in [80], by

non-Tate Weierstrass models that exhibit a highly nontrivial cancellation in the vanishing

of the discriminant at higher orders. The role of SCFTs in matter transitions that we have

uncovered here suggests a resolution of a question regarding under what circumstances a

Weierstrass model can exhibit such an exotic higher genus matter representation other than

the adjoint: it seems in particular that a model formed by starting with a Tate model for a

group G on a smooth divisor D and then deforming the divisor to a singular geometry will

not develop an exotic matter representation in the singular limit without moving through

a superconformal fixed point to a different branch of the set of Weierstrass models where
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the algebraic structure of the model is changed, modifying the cancellation mechanism in

the discriminant.

7.2 Further directions

4D realizations. While we have focused here on 6D models, over which we have the

greatest level of control, similar transitions should be possible in 4D N = 1 field theories,

particularly in the context of global models coupled to supergravity. From the heterotic and

F-theory points of view, the 4D constructions are almost identical to the 6D constructions.

In the heterotic picture, bundles with structure groups within E8 that are products like

SU(3) × SU(2) can arise on Calabi-Yau threefolds as well as on K3. And in the F-theory

picture, the algebraic structure of Weierstrass models giving these matter transitions is

formally identical in 4D or in 6D. One issue that may arise, however, is that while in 6D

the geometric moduli space precisely matches the moduli space of flat directions in the

low-energy theory, in four dimensions there is a superpotential that lifts some of the flat

directions. Such a superpotential could in principle either obstruct the passage between

branches with different matter content, or render unstable one of the branches. In 4D

there are fewer constraints from anomaly cancellation in the N = 1 low-energy theory, so

it is less clear why the specific combinations of matter representations that admit matter

transitions in the 6D theories should be singled out particularly. Recent work [20] has given

a description of a very broad class of F-theory/heterotic dual pairs for 4D F-theory com-

pactifications. Further study of 4D versions of the matter transitions explored here in some

of these dual geometries would provide an interesting direction for further investigations.

Geometry of transitions. The matter transitions described here should correspond ge-

ometrically to geometric transitions between distinct elliptically fibered Calabi-Yau man-

ifolds with the same h1,1(X) but different intersection structure. Such transitions would

be interesting to study further from the purely geometric perspective, or in the context of

other types of string compactification.

Other groups and representations. We have focused here on a set of gauge groups

and matter transitions for the classical groups SU(N), SO(N) and Sp(N) that are related

to the basic SU(6) Λ3 example by simple Higgsing transitions. It would be interesting to

explore further other possibilities, including exceptional groups and higher representations,

such as tri-fundamental representations of SU(2) × SU(2) × SU(2), etc.

Global models and string universality. The models with unusual matter representa-

tions that we have considered here provide an interesting test of the 6D string universality

conjecture [89], which suggests that all consistent low-energy theories of matter fields,

gauge fields and tensor fields coupled to supergravity in six dimensions should have a UV

description in string theory or F-theory. The low-energy models with SU(6) and SU(7)

gauge groups and Λ3 representations that are acceptable from low-energy anomaly cancel-

lation conditions we have identified here in both heterotic and F-theory constructions as

models with good UV completions in string theory. The SU(8) theory with a Λ4 matter

representation, however, seems acceptable from the low-energy point of view but does not

– 81 –



J
H
E
P
0
4
(
2
0
1
6
)
0
8
0

seem to have a clear realization in either the heterotic or F-theory pictures. This raises the

question of whether this theory suffers from some as-yet-undiscovered inconsistency, or can

be realized in some new way in F-theory or another string construction, or whether it ac-

tually represents a counterexample to the string universality conjecture. Similar questions

can be asked of the SU(9) nT = 1 model with Λ3 representations. An interesting feature

of these models that seem acceptable from the low-energy point of view but for which we

cannot identify a consistent F-theory or heterotic construction is that on the F-theory side

they would involve in principle an embedding of a Dynkin diagram of the gauge group

into Ê8 and not E8 at the singular point. Resolving whether there is some low-energy

problem with such configurations or some novel F-theory mechanism for realizing such

constructions is an interesting open problem. It seems promising that models with larger

N and/or higher-index antisymmetric representations, such as SU(10) with Λ3 or SU(9)

with Λ4 seem to violate anomaly cancellation so there is a close connection between what is

allowed in the low-energy theory and what can be realized through F-theory, with the dif-

ference between these conditions giving only a small intermediate zone of uncertainty. One

possibly surprising feature here is that the constraints from the low-energy theory seem to

depend on the gravitational anomaly cancellation condition, while the F-theory constraints

on gauge groups that admit a Λ3 representation seem to come from local considerations.

This should be understood better.

Higher genus matter. The explicit F-theory construction found here of matter in the

symmetric representation of SU(3) complements another family of Weierstrass models con-

structed recently [80] that realize the same kind of matter fields. These constructions,

however, seem to give slightly different classes of models. It would be desirable to have a

more general understanding of how such Weierstrass models are constructed and a general

framework that would encompass both of these classes of models. It would also be inter-

esting to construct more general types of matter, such as a 3-symmetric representation of

SU(N), using the kinds of analysis developed here.

Transitions between conjugate representations. An interesting question, which we

have not explored here, is the extent to which matter transitions can occur for smaller

groups like SU(5). While in 6D supergravity theories, the Λ3 representation of SU(5) is

the conjugate of the Λ2 representation and therefore lies in the same hypermultiplets, a

Higgsing of the SU(6) Λ3 matter transition appears to give a class of SU(5) Weierstrass

models where there is a transition between Λ3 and Λ2 representations through an SCFT.

For 6D theories, both branches of the theory seem to represent special cases of the general

SU(5) construction, so that there is no obstacle to deforming the theory from one branch

to the other without passing through the SCFT. In the F-theory picture this follows by

taking a general form of the parameter φ0 from (3.7), (3.8) without any factorization as

in (3.10)–(3.12). In the heterotic picture the transition can be realized by building an

SU(5) bundle with a specialized structure group S(U(2)× U(3)), where there can be small

instanton transitions between the factors, but for compactifications on K3 there is no

obstruction to deformation to a general SU(5) bundle (so long as the required matter is

present for higgsing). For 4D theories, on the other hand, there may be obstructions to
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moving between these branches, which would stem physically from the fact that in 4D

N = 1 theories there is a distinction between chiral multiplets in the Λ2 and conjugate

representations. This would be interesting to investigate further.

Massive U(1)’s in heterotic/F-theory duality. We have found that some models

such as the SU(7) and SU(8) models with exotic matter seem to always give rise to massive

U(1)’s in the heterotic description, which correspond to an enhanced Mordell-Weil group

on one side of the stable degeneration limit in the corresponding F-theory picture, but

not both. It would be interesting to further explore the physical consequences of these

massive abelian symmetries in the low-energy theory away from the stable degeneration

limit. Particularly in 4D compactifications, it is expected that the discrete remnants of

such massive symmetries can significantly affect the structure of the theory — including

Yukawa couplings, Kähler potentials and the vacuum structure of the theory [50, 90–93].

Superconformal points. We have found that the transitions between different matter

fields occur at points in the heterotic moduli space where instantons have shrunk to a point,

corresponding to points in the F-theory Weierstrass moduli space where (4, 6) singularities

have arisen at codimension two loci in the base. These are the same transition points that

give superconformal fixed points in the low-energy theory, and which lead to tensionless

string transitions to models with more tensor multiplets in the 6D framework. A large class

of 6D SCFT’s were constructed from the F-theory point of view in [39] and couplings of

these theories to supergravity were explored in [42]. It would be interesting to investigate

further how the SCFT’s that play the role of mediating the matter transitions considered

here fit into this picture. In particular, it would be nice to find some clear way of following

the transition from one field theory to another through the superconformal point strictly

in the language of the low-energy theory.
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A Addition of sections

In this section we review briefly the addition of points on the elliptic fiber (see [70, 94] for

reviews). Given a Weierstrass model in P[1, 2, 3]

y2 = x3 + fxz4 + gz6 (A.1)
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the zero section can be defined to be (x, y, z) = (1, 1, 0). On the affine patch where z = 1,

the addition (denoted [+]) of two points (a, b) and (A,B) on the elliptic fiber can be defined

as follows. On this patch the Weierstrass equation can be written as

y2 = x3 + fx+ g = (x− a)(x2 + ax+ c) + b2 (A.2)

= (x−A)(x2 +Ax+ C) +B2 (A.3)

Then, P = p[+]P = (A,B) can be defined by demanding that (A,−B) is the third inter-

section point of the line that joins the points p and P . Then, in the notation of [70],

P =

((
B − b
A− a

)2

− (a+A),−
(
B − b
A− a

)3

+ (2a+A)

(
B − b
A− a

)
− b

)
(A.4)

Likewise, the point 2P = P [+]P is defined via

2P =

((
C + 2A2

2B

)2

− 2A),−
(
C + 2A2

2B

)3

+ (3A)

(
C + 2A2

2B

)
−B

)
(A.5)

B Three stable degeneration limits for SU(8)

As described in section 5.6, there are three possible paths that lead to stable degeneration

limits for the SU(8) F-theory geometry. Of these, only one leads to a smooth K3 manifold

in the heterotic dual theory. In order to take the stable degeneration limit given by equa-

tions (5.2) and (5.4), it is necessary to decide on a limit which takes fi, gj → 0 for i > 4

and j > 6. A Groebner basis calculation [79] demonstrates that the most general path to

such a solution can be described by the following equations (the primary decomposition of

the stable degeneration locus):

4ζ3ψ5
2φ4 − 24λ2φ4

3 − τ2ψ5
3 − 4ψ5ω1φ4

2 = 0 (B.1)

δ2ψ5 + 2ζ4φ4 = 0 (B.2)

12δ2λ2φ4
2 + 4ζ3ζ4ψ5φ4 − ζ4τ

2ψ5
2 − 4ζ4ω1φ4

2 = 0 (B.3)

6δ4λ2φ4 − 2δ2ζ4ω1φ4 − 4ζ3ζ42φ4 + ζ42τ2ψ5 = 0 (B.4)

3δ6λ2 − δ4ζ4ω1 − 2δ2ζ3ζ42 − ζ43τ2 = 0 (B.5)

Note that if either ζ4 or τ share factors with δ, (4, 6) singularities are unavoidable on the

shared factor.

We will first consider (B.2). This equation would imply that ζ4φ4 is proportional to

to δ2, and every zero of δ must be in either ζ4 or φ4. But δ and ζ4 cannot share any zeroes

if we wish to avoid (4,6) singularities. As a result, φ4 must be proportional to δ2, or

φ4 = φ′4δ
2. (B.6)

This in turn implies that

ψ5 = −2ζ4φ
′
4 (B.7)
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If the expression for ψ5 is substituted into (B.1), it leads to

4φ′4
3 (

2ζ3
4τ

2 + δ2
(
ζ3ζ

2
4 + 2δ2ζ4ω1 − 6δ4λ2

))
= 0 (B.8)

Unless φ′4 = 0, we must have that ζ3
4τ

2 is proportional to δ2. However, this possibility

would introduce (4, 6) singularities and will therefore not be a valid geometry. Thus, the

only option is to take φ′4 = 0, and both φ4 and ψ5 must go to zero. In fact, once (B.2)

is solved as above, all of the other equations similarly lead to singular geometries. As a

result the φ4 = ψ5 = 0 branch is the unique smooth solution.

C Stable degeneration limits and U(1) symmetries

In this section, we briefly explore the compatibility of the stable degeneration limit and

the existence of non-zero rank Mordell-Weil group in the Calabi-Yau geometry. The ex-

istence of a log semi-stable degeneration limit [57, 58] depends globally on being able to

consistently define dP9-fibered n-folds Y (1) and Y (2) and their ability to share a common

divisor D = Xn a CY manifold of one dimension lower. Moreover, the limit requires that

the fibrations of Y (i) and Xn be compatible — that is, the elliptic fiber of Xn should be

the same form as the elliptic fiber of Y (i), etc. In what follows, we will demonstrate that

the process of stable degeneration and presentation of a manifold in Weierstrass form do

not necessarily commute. When this paper was in the final stages of preparation, [78] ap-

peared which comprehensively studies the above questions using a different approach. For

concreteness, here we will illustrate the relevant ambiguities in stable degeneration with

elliptically fibered threefold, Y , with base Fn.

To begin, we briefly review the “standard” stable degeneration limit in the case that

the elliptic fibration of Y admits a single section (i.e. the rank of MW (Y ) is vanishing).

That is, Y is a generic Weierstrass model over Fn. We can realize this torically as a

hypersurface with P123[6] fiber. That is, the charge matrix

Y =

y x z x0 x1 y0 y1

6 3 2 1 0 0 0 0

0 0 0 -2 0 0 1 1

0 0 0 -2-n 1 1 n 0

(C.1)

where the first column denotes a degree (6, 0, 0) hypersurface in the toric ambient space. For

this choice of global description of the manifold, the stable degeneration limit corresponds

to choosing

Y (1) =

y x z x0 x1 y0 y1

6 3 2 1 0 0 0 0

0 0 0 -1 0 0 1 1

0 0 0 -2-n 1 1 n 0

(C.2)

(with Y (2) similar). The defining equation of Y (1) is of the same form as that of Y (i.e.

of Weierstrass form: y2 = x3 + fxz4 + gz6) but with f, g truncated at degree ≤ 4, 6 in
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the coordinate (σ = y0). This global description of Y (1) is equivalent to the scaling limit

defined in (5.4). Briefly, for the Weierstrass coefficients of Y above, we choose

f ∼
8∑
i=0

fiσ
i , g ∼

12∑
j=0

gjσ
j (C.3)

where σ = 0 and σ = ∞ define the poles of the P1 fiber of Fn. To take the stable

degeneration limit, a scaling is chosen in which

fi scales as ε(i−4) (C.4)

gj scales as ε(j−6) .

which in the limit that ε → 0 “separates” the dP9-fibered halves of the Y . Note that in

this scaling, the divisor D = K3 along which Y (1) and Y (2) are glued is defined by f4, g6

(the coefficients of weight zero in ε). These “middle” coefficients define the moduli of an

elliptically fibered K3 surface with a compatible (i.e. P123[6]) fibration.

Now, in constrast, when the F-theory geometry has a higher rank Mordell-Weil group

then the stable degeneration limit may differ with the global description of Y . The following

example provides a simple example of a geometry where the process of presenting a manifold

in Weierstrass form and the stable degeneration limit do not commute.

Following [70], let us realize the elliptic fiber of a generic rk(MW ) = 1 F-theory

geometry, Y , as a toric blow up of P112[4]. For concreteness, consider the global geometry

Y =

u v w t s x0 x1 y0 y1

1 1 0 1 -1 0 0 0 0 0

4 1 1 2 0 0 0 0 0 0

2 0 0 1 0 1 0 0 0 0

0 0 -2 0 0 0 0 0 1 1

0 0 -n-2 0 0 0 1 1 n 0

(C.5)

This leads to generic defining equation of the form

w2s+ b0u
2ws2t+ b1uvwst+ b2v

2wt = c0u
4t2s3 + c1u

3vt2s2 + c2u
2v2t2s+ c3uv

3t2 (C.6)

where bi, cj are functions of the base coordinates (x, y). By shifting w by a multiple of u it

is possible to set b0 = b1 = 0. Labeling b2 simply as b, and letting subscripts denote degree

in xi, we have explicitly

b = y4
0b4−2n(x) + y3

0y1b4−n(x) + y2
0y

2
1b4(x) + y0y

3
1bn+1(x) + y4

1b2n+4(x) (C.7)

c1 = y2
0(c1)2−n(x) + y0y1(c1)2(x) + y2

1(c1)n+2(x)

c2 = y2
0(c2)4−2n(x) + y3

0y1(c2)4−n(x) + y2
0y

2
1(c2)4(x) + y0y

3
1(c2)n+4(x) + y4

1(c2)2n+4(x)

c3 = y6
0(c3)6−3n(x) + y5

0y1(c3)6−2n(x) + y4
0y

2
1(c3)6−n(x) + y3

0y
3
1(c3)6(x)

+ y2
0y

4
1(c3)n+6(x) + y0y

5
1(c3)2n+6(x) + y6

1(c3)3n+6(x)
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Moreover, Y in (C.5) has a compatible K3 fibration given by

K3 =

u v w t s y0 y1

1 1 0 1 -1 0 0 0

4 1 1 2 0 0 0 0

2 0 0 1 0 1 0 0

0 0 -2 0 0 0 1 1

(C.8)

Here once again we have the defining relation (C.6) where the degrees of the coefficients in

the K3 case in terms of the base variables (y) are given by

deg(c0) = 0 , deg(c1) = 2 , deg(b) = deg(c2) = 4 , deg(c3) = 6 (C.9)

Now to take the stable degeneration limit of the threefold given in (C.5) we need to

identify the “middle” K3 along which Y (i) will be glued. Here the “middle” K3 coefficients

inside of X are given by

b ∼ y2
0y

2
1b4 (C.10)

c1 ∼ y0y1(c1)2 (C.11)

c2 ∼ y2
0y

2
1(c2)4 (C.12)

c3 ∼ y3
0y

3
1(c3)6 (C.13)

More precisely, as in the standard case above, the stable generation limit can be defined via

a scaling of the coefficients of b, ci. To take the stable degeneration limit Y → Y (1)∪D Y (2)

with Y defined by (C.5) and D defined via (C.8) it is possible to choose

bi scales as ε(i−4) (C.14)

(c1)j scales as ε(j−2)

(c2)k scales as ε(k−4)

(c3)l scales as ε(l−6) .

In the limit that ε → 0 this separates Y into two dP9 fibered (non-CY) 3-folds. Now

we come to the central observation to be made from the above geometry: in this stable

degeneration limit, it is straightforward to verify that the presence of a non-trivial Mordell-

Weil group is fully preserved not only in each of Y (1), Y (2) but also in the “middle” K3

surface (C.8) (defined by the ε weight zero terms above).

Having come thus far, it should now be recalled [70] that it is always possible via

coordinate redefinitions (i.e. the Jacobian procedure) to put a two-section model such as

Y in (C.5) explicitly into Weierstrass form. The dictionary to Weierstrass form defines the

coefficients

f = c1c3 − b2c0 −
1

3
c2

2 (C.15)

g = c0c
2
3 −

1

3
c1c2c3 +

2

27
c3

2 −
2

3
b2c0c2 +

1

4
b2c2

1 (C.16)
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With this explicit defining relation we are once again considering a manifold with P123[6]

fiber type of the form given in (C.1). For such a geometry, the usual stable degeneration

limit (i.e. the splitting given in (C.2)) and the scalings defined in (C.4) can be employed.

To begin, the “middle” K3 coefficients can be readily identified as those of ε weight

zero. For example combining (C.7) with (C.15) the coefficients of y0
4y1

4 in f include the

following terms from the product c1c3

c1c3 ∼ (y0
4y1

4)
(
(c1)2(c3)6 + (c1)n+2(c3)−n+6 + (c1)−n+2(c3)n+6

)
(C.17)

(with many further terms of this order arising from b2c0 and c2
2). These coefficients (and

the coefficients of y6
0y

6
1 in g) determine a “middle” K3 surface along which the standard

stable degeneration limit would glue the new P123[6]-fibered manifolds Y (i). Note that this

same result could be obtained simply by performing the scaling rule given in (C.14) since

according to that rule, the epsilon factors cancel in terms like (c1)n+2(c3)−n+6 above.

It is clear by inspection of the Weierstrass coefficients of the K3 surface (including the

terms in (C.17)) that it is not of the form required for a higher rank Mordell-Weil group.

Moreover it does not define the same K3 surface as we obtained in (C.8) and (C.10).

Although the Weirerstrass form for Y given by (C.15) initially has a non-trivial Mordell-

Weil group, that structure is not in general preserved in either Y (1), Y (2) or the gluing

divisor D = K3. In this case, unlike in the stable degeneration limit of (C.5), the rank of

Mordell-Weil is reduced in stable degeneration. Thus finally, we have reached our central

observation: the procedures of stable degeneration of a global elliptically fibered geometry

and putting that fibration into explicit Weierstrass form, do not in general commute. That

is, varying the order of these operations leads to different weakly coupled limits.

D Details of heterotic Higgsing analysis

In this appendix, we provide some of the details of the computations which underly the

heterotic description of the Higgsing processes as described in tables 12, 15 and 18. The

cases of Higgsing SU(6) on fundamental, SU(7) on two-index antisymmetric and SU(8) on

three-index antisymmetric matter are described in the main text.

D.1 Higgsing on fundamental matter

D.1.1 SU(7)

Let us consider what happens to bundle topology as we Higgs from SU(7) to SU(6). The

relevant group theory is

SU(7) → SU(6)×U(1) (D.1)

7 = 1−6 + 61

21 = 6−5 + 152

35 = 15−4 + 203

Clearly, we wish to turn on the singlet of SU(6) inside SU(7) to achieve the Higgsing.

However, we see from table 8 that there are two types of 7 (and indeed 7) one associated
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to H1(V∨2 ⊗ L) and another to H1(L∨2). It turns out that, at an arbitrary point in the

moduli space of the base K3, we can not simply choose which of these to give a VEV too.

A combination of both must be turned on simultaneously.

We can see this structure by examining the change in bundle geometry in going from

an SU(7) to SU(6) visible symmetry. Turning on the VEV associated to H1(V∨2 ⊗ L)

corresponds to forming the following extension.

0→ L → VSU(3) → V2 → 0 (D.2)

Turning on the field associated to H1(L∨2) corresponds to forming this extension.

0→ L∨ → VSU(2) → L → 0 (D.3)

The conjugate representations that must also be given VEVs correspond to the dual to

the above two sequences and the actual SU(3) and SU(2) bundles are formed from the

combination of these mutually dual extensions in the usual manner [54].

We see now that the need to turn on both types of 7 corresponds to the need to form a

bundle with structure group SU(3) × SU(2), which is the relevant case to arrive at SU(6).

At special loci in the moduli space of K3 one can leave one of the two extensions (D.2)

and (D.3) split and still maintain bundle poly-stability (this is actually the same locus

on which the original S(U(2) × U(1)) bundle is poly-stable). Splitting one of these two

bundles in this fashion would induce an extra U(1) factor in the commutant of the bundle

structure group inside E8. This additional abelian factor will be Green-Schwarz anomalous

however [47–52].

One can check that the matter one achieves in the SU(6) case obtained by Higgsing

SU(7) in this fashion agrees with what one would get by plugging in the topology of the

above bundles into a direct computation of the spectrum of an SU(6) model, as given in

table 7, a calculation to which we now turn.

Equation (D.1) describes how the SU(7) representations that we have in our initial

theory branch to SU(6) representations under the breaking. We start with a number of

each of these representations, determined by the topology of the bundle V = V2 ⊕ L, as

detailed in table 8. This information is enough to determine the spectrum after breaking.

Alternatively, from equations (D.2) and (D.3) we can determine the topology of the

bundle VSU(3) ⊕ VSU(2) that we transition to and from there, using table 7, the matter

content after the Higgsing. The second Chern classes of the two bundles can easily be

determined to be,

c2(VSU(3)) = c2(V2)− c1(L)2 (D.4)

c2(VSU(2)) = −c1(L)2 ,

which can be then used to determine the matter content of the resulting SU(6) theory.

In table 23 we present the matter content of an SU(6) bundle with the topology

just described, together with the matter content that would be naively expected under a

transition from the SU(7) theory to SU(6) using table 8 and the branching rules (D.1).

We can now observe that this result matches the field theory analysis of the Higgs

mechanism given in section 2.3.1.
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SU(6) Representation # from SU(7) multiplet decomposition # found after transition

1 6c2(V2)− 10c1(L)2 − 18 6c2(V2)− 10c1(L)2 − 22

6 2c2(V2)− 10c1(L)2 − 10 2c2(V2)− 5c1(L)2 − 12

6 2c2(V2)− 10c1(L)2 − 10 2c2(V2)− 5c1(L)2 − 12

15 c2(V2)− c1(L)2 − 6 c2(V2)− c1(L)2 − 6

15 c2(V2)− c1(L)2 − 6 c2(V2)− c1(L)2 − 6

20 −c1(L)2 − 4 −c1(L)2 − 4

Table 23. Matter content after Higgsing an SU(7) to an SU(6) theory, both via a naive decompo-

sition of the initial SU(7) multiplets and via a direct computation from the resulting SU(6) bundle.

D.1.2 SU(8)

The relevant group theory in this case is as follows.

SU(8) → SU(7)×U(1) (D.5)

8 = 71 + 1−7 (D.6)

28 = 7−6 + 212 (D.7)

56 = 21−5 + 353 (D.8)

Given this, giving a VEV to the singlet of SU(7) inside the 8 of SU(8) will Higgs SU(8) to

SU(7). Looking at table 9, we see that the 8’s correspond to elements of H1(L∨3). Giving

such a field a VEV corresponds to forming the following extension (and its dual via the

associated 8 VEV).

0→ L∨2 → V2 → L → 0 (D.9)

This is a U(2) bundle which can form part of an S(U(2)×U(1)) object, in order to break

to SU(7) (with, in addition, a Green-Schwarz anomalous U(1)), as follows.

V = V2 ⊕ L (D.10)

As in previous cases, we now compare the SU(7) spectrum that is achieved by a

decomposition of the parent SU(8) theory to the spectrum associated to the SU(7) theory

defined by (D.9) and (D.10).

In table 24 we have used the fact that, for the bundle given in (D.9),

c2(V2) = −2c1(L)2 . (D.11)

As in previous cases, the differences between the second and third columns in table 24

precisely match what we would expect from an analysis of the Higgs mechanism in such

a situation. This Higgsing is precisely of the form described in a field theory context in

section 2.3.2.

It should also be mentioned that, during this transition, the ray in the moduli space of

K3 where the S(U(1)×U(1)) bundle and S(U(2)×U(1)) bundle are slope poly-stable is the

same. Therefore the K3 moduli expectation values need not change during this process.
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SU(7) Representation # from SU(8) multiplet decomposition # found after transition

1 −9c1(L)2 − 4 −9c1(L)2 − 6

7 −13
2 c1(L)2 − 4 −13

2 c1(L)2 − 6

7 −13
2 c1(L)2 − 4 −13

2 c1(L)2 − 6

21 −5
2c1(L)2 − 4 −5

2c1(L)2 − 4

21 −5
2c1(L)2 − 4 −5

2c1(L)2 − 4

35 −1
2c1(L)2 − 2 −1

2c1(L)2 − 2

35 −1
2c1(L)2 − 2 −1

2c1(L)2 − 2

Table 24. Matter content after Higgsing an SU(8) to an SU(7) theory, both via a naive decompo-

sition of the initial SU(8) multiplets and via a direct computation from the resulting SU(7) bundle.

D.2 Higgsing on two-index antisymmetric matter

D.2.1 SU(6)

The relevant group theory in this case is as follows.

SU(6) → SU(4)× SU(2)×U(1) (D.12)

6 = (1,2)−2 + (4,1)1 (D.13)

15 = (1,1)−4 + (4,2)−1 + (6,1)2 (D.14)

20 = (4,1)−3 + (4,1)3 + (6,2)0 (D.15)

The breaking pattern in (D.12) corresponds to giving a VEV to a 15, 15 pair. The

15’s, according to table 7, lie in the cohomology H1(V∨3 ). In terms of bundle topology,

giving an expectation value to such a field corresponds to forming the following bundle.

V = V2 ⊕ V4 (D.16)

where 0→ V3 → V4 → O → 0

The conjugate representation which must also be given a VEV corresponds to the dual to

the above sequence and the actual SU(3) bundle is formed from the combination of these

mutually dual extensions in the usual manner [54].

The group theory for a SU(4) × SU(2) compactification of heterotic is as follows.

E8 ⊃ SU(4)× SU(2)× SU(4)× SU(2) (D.17)

248 = (1,1,1,3) + (6,2,1,2) + (1,2,6,2) + (4,1,4,2) + (4,1,4,2)

+(1,3,1,1) + (4,2,4,1) + (4,2,4,1) + (6,1,6,1)

+(15,1,1,1) + (1,1,15,1)

This leads to the low-energy spectrum given in table 25. The number of massless hy-
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Representation Cohomology Multiplicity

(1,1) H1(End0(V2))⊕H1(End0(V4)) 4c2(V2) + 8c2(V4)− 36

(6,2) H1(V2) c2(V2)− 4

(1,2) H1(V2 ⊗ ∧2V4) 6c2(V2) + 4c2(V4)− 24

(4,1) H1(V∨4 ⊗ V2) 4c2(V2) + 2c2(V4)− 16

(4,2) H1(V∨4 ) c2(V4)− 8

(6,1) H1(∧2V4) 2c2(V4)− 12

Table 25. The cohomology associated to each representation of the low-energy gauge group

SU(4) × SU(2).

SU(4)×SU(2) Representation # from SU(6) multiplet decomposition # found after transition

(1,1) 4c2(V2) + 8c2(V3)− 34 4c2(V2) + 8c2(V3)− 36

(6,2) c2(V2)− 4 c2(V2)− 4

(1,2) 6c2(V2) + 4c2(V3)− 24 6c2(V2) + 4c2(V3)− 24

(4,1) 4c2(V2) + 2c2(V3)− 16 4c2(V2) + 2c2(V3)− 16

(4,2) c2(V3)− 6 c2(V3)− 8

(6,1) 2c2(V3)− 12 2c2(V3)− 12

Table 26. Matter content after Higgsing an SU(6) to an SU(4) × SU(2) theory, both via a naive

decomposition of the initial SU(6) multiplets and via a direct computation from the resulting

SU(4) × SU(2) bundle.

permultiplets can be read off from table 25 and leads to the following anomaly cancela-

tion condition.

nH + 29nT − nV = 273

⇒ c2(V2) + c2(V4) +
1

60
c2(End0(VE8) = 24 (D.18)

We can now specialize this result to the particular SU(4) × SU(2) bundle that we found

in (D.16). In this instance we have,

c2(V4) = c2(V3) (D.19)

We can now construct the equivalent table to those that have been formed in the proceeding

cases. We compare the spectrum which is obtained by decomposing the initial SU(6)

multiples with that obtained by direct computation from the bundle after transition. The

results of this comparison are in table 26.

As in all of the cases in this section, the result is fully consistent with the field theory

analysis given in section 2.3.2.
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Representation Cohomology Multiplicity

(1,1) H1(End0(V2)) 4c2(V2)− 6

(1,2) H1(L3)⊕H1(L∨3) 2(−9
2c1(L)2 − 2)

(15,1) H1(L2) −2c1(L)2 − 2

(15,2) H1(L∨) −1
2c1(L)2 − 2

(6,1) H1(V2 ⊗ L∨2) c2(V2)− 4c1(L)2 − 4

(6,2) H1(V2 ⊗ L) c2(V2)− c1(L)2 − 4

(20,1) H1(V2) c2(V2)− 4

Table 27. The cohomology associated to each representation of the low-energy gauge group SU(6)×
SU(2).

D.2.2 SU(8)

The relevant group theory in this case is the following.

SU(8) ⊃ SU(6)× SU(2)×U(1) (D.20)

28 = (1,1)−6 + (6,2)−2 + (15,1)2

8 = (1,2)−3 + (6,1)1

56 = (6,1)−5 + (20,1)3 + (15,2)−1

This breaking pattern of interest in (D.20) corresponds to giving a VEV to a 28, 28

pair. The 28’s, according to table 9, lie in the cohomology H1(L∨2). In terms of bundle

topology, giving an expectation value to such a field corresponds to forming the following

bundle.

V = V2 ⊕ L⊕ L∨ (D.21)

where 0→ L∨ → V2 → L → 0 (D.22)

As in previous cases one should really think of V2 as being a deformation of this

extension and its dual [54]. Here V is an SU(2) × S(U(1) × U(1)) bundle. The correct

embedding of SU(2) × U(1) does indeed break E8 to SU(6) × SU(2), with an additional

Green-Schwarz massive U(1) being present.

The group theory for a SU(6) × SU(2) compactification of heterotic is as follows.

E8 ⊃ SU(6)× SU(2)× SU(2)×U(1) (D.23)

248 = (1,1,3)0 + (1,1,1)0 + (1,2,1)3 + (1,2,1)−3 + (1,3,1)0

+(35,1,1)0 + (15,1,1)−2 + (15,2,1)1 + (15,1,1)2 + (15,2,1)−1

+(6,1,2)−2 + (6,2,2)1 + (6,1,2)2 + (6,2,2)−1 + (20,1,2)0

This leads to the low-energy spectrum given in table 27. The number of massless hy-
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SU(6)×SU(2) Representation # from SU(8) multiplet decomposition # found after transition

(1,1) −4c1(L)2 − 4 −4c1(L)2 − 6

(1,2) −9c1(L)2 − 4 −9c1(L)2 − 4

(15,1) −2c1(L)2 − 2 −2c1(L)2 − 2

(15,2) − 1
2c1(L)2 − 2 − 1

2c1(L)2 − 2

(6,1) −5c1(L)2 − 4 −5c1(L)2 − 4

(6,2) −2c1(L)2 − 2 −2c1(L)2 − 4

(20,1) −c1(L)2 − 4 −c1(L)2 − 4

Table 28. Matter content after Higgsing an SU(8) to an SU(6) × SU(2) theory, both via a naive

decomposition of the initial SU(8) multiplets and via a direct computation from the resulting

SU(2)× S(U(1)×U(1)) bundle.

permultiplets can be read off from this table leading to the following anomaly cancela-

tion condition.

nH + 29nT − nV = 273 (D.24)

⇒ c2(V2)− 3c1(L)2 +
1

60
c2(End0(VE8)) = 24

We can now specialize this result to the particular SU(2)×S(U(1)×U(1)) bundle that

we obtained in (D.21). In this instance we have,

c2(V2) = −c1(L)2 . (D.25)

We are now in a position to construct the equivalent table to those that have been

formed in the other cases. We compare the spectrum which is obtained by a decomposition

of the initial SU(8) multiplets with that obtained by direct computation from the bundle

after transition. The results of this comparison are in table 28.

As in all of the cases in this section, the result is fully consistent with the field theory

analysis given in section 2.3.2.

D.3 Higgsing on three-index antisymmetric matter

D.3.1 SU(6)

The group theory relevant to this case is as follows.

SU(6) → SU(3)× SU(3)×U(1) (D.26)

6 = (3,1)1 + (1,3)−1 (D.27)

15 = (3,1)2 + (1,3)−2 + (3,3)0 (D.28)

20 = (1,1)3 + (1,1)−3 + (3,3)−1 + (3,3)1 (D.29)

The breaking pattern we are interested in thus corresponds to giving a VEV to matter in the

20 representation. The 20, according to table 7, is associated with the cohomology H1(V2).
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(1,1) H1(End0(V3))⊕H1(End0(Ṽ3)) 6c2(V3) + 6c2(Ṽ3)− 32

(3,1) H1(V3 ⊗ Ṽ3) 3c2(V3) + 3c2(Ṽ3)− 18

(1,3) H1(V3 ⊗ Ṽ∨3 ) 3c2(V3) + 3c2(Ṽ3)− 18

(3,3) H1(V∨3 ) c2(V3)− 6

(3,3) H1(Ṽ∨3 ) c2(Ṽ3)− 6

Table 29. The cohomology associated to each representation of the low-energy gauge group

SU(3) × SU(3).

In terms of bundle geometry, therefore, giving a VEV to matter in this representation

corresponds to forming the following bundle.

V = V3 + Ṽ3 (D.30)

where 0 → V2 → Ṽ3 → O → 0

As in the other cases in this appendix, one should really think of V3 as being a deformation

of this extension and its dual [54].

The group theory associated to a SU(3) × SU(3) compactification of heterotic string

theory is as follows.

E8 ⊃ SU(3)× SU(3)× SU(3)× SU(3) (D.31)

248 = (1,1,1,8) + (3,1,3,3) + (1,3,3,3) + (3,3,1,3) + (3,1,3,3)

+(1,3,3,3) + (3,3,1,3) + (3,3,3,1) + (3,3,3,1)

+(8,1,1,1) + (1,8,1,1) + (1,1,8,1) (D.32)

This leads to the matter content given in table 29.

The matter content in table 29 leads to the following anomaly cancelation condition.

nH + 29nT − nV = 273 (D.33)

⇒ c2(V3) + c2(Ṽ3) +
1

60
c2(End0(VE8)) = 24 (D.34)

As in previous cases, we can now specialize this result to the particular SU(3) × SU(3)

bundle which we obtain after transition, as given in equation (D.30). We have that,

c2(Ṽ3) = c2(V2) . (D.35)

Using this, we can compare the spectrum which is obtained by a decomposition of the

initial SU(6) multiplets to that obtained by a direct computation from the bundle after

transition. The results of this comparison are in table 30.

As in all of the cases we look at, the result is fully consistent with the field theory

analysis given in section 2.3.2
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SU(3)×SU(3) Representation # from SU(6) multiplet decomposition # found after transition

(1,1) 6c2(V3) + 6c2(V2)− 30 6c2(V3) + 6c2(V2)− 32

(3,1) 3c2(V3) + 3c2(V2)− 18 3c2(V3) + 3c2(V2)− 18

(1,3) 3c2(V3) + 3c2(V2)− 18 3c2(V3) + 3c2(V2)− 18

(3,3) c2(V3)− 6 c2(V3)− 6

(3,3) c2(V2)− 4 c2(V2)− 6

Table 30. Matter content after Higgsing an SU(6) to an SU(3) × SU(3) theory, both via a naive

decomposition of the initial SU(6) multiplets and via a direct computation from the resulting

SU(3) × SU(3) bundle.

D.3.2 SU(7)

The analysis for Higgsing SU(7) on triple antisymmetrics is extremely similar. We have,

SU(7) ⊃ SU(4)× SU(3)×U(1) (D.36)

35 = (1,1)−12 + (4,1)9 + (4,3)−5 + (6,3)2

7 = (1,3)−4 + (4,1)3

21 = (1,3)−8 + (4,3)−1 + (6,1)6 .

The breaking pattern we are interested in thus corresponds to giving a VEV to a 35, 35

pair. The 35’s, according to table 8, lie in the cohomology H1(L). In terms of bundle

topology, giving an expectation value to such a field corresponds to forming the following

bundle.

V = V2 ⊕ Ṽ2 (D.37)

where 0 → L → Ṽ2 → O → 0

As in previous cases one should really think of Ṽ2 as being a deformation of this extension

and its dual [54]. Here Ṽ2 is an U(2) bundle and the bundle V2 is unaffected by the

transition. The overall structure group is S(U(2) × U(2)) which does indeed break E8 to

SU(4)× SU(3)×U(1) (where the last, U(1), factor is Green-Schwarz anomalous).

The group theory for a SU(4)× SU(3)×U(1) heterotic compactification is as follows,

E8 ⊃ SU(4)× SU(3)×U(1)× SU(2)× SU(2) (D.38)

248 = (1,1,1,3)0 + (1,3,2,2)−2 + (4,3,1,2)1 + (1,3,2,2)2 + (4,3,1,2)−1 (D.39)

+(4,1,1,2)−3 + (4,1,1,2)3 + (6,1,2,2)0 + (1,8,1,1)0 + (1,3,1,1)−4

+(4,3,2,1)−1+(6,3,1,1)2+(1,3,1,1)4+(4,3,2,1)1+(6,3,1,1)−2 + (1,1,1,1)0

+(1,1,3,1)0 + (4,1,2,1)−3 + (4,1,2,1)3 + (15,1,1,1)0 ,

which leads to the matter content given in table 31.

This matter content leads to the following anomaly cancellation condition.

nH + 29nT − nV = 273 (D.40)

⇒ c2(Ṽ2) + c2(V1)− 2c1(Ṽ2)2 +
1

60
c2(End0(VE8)) = 24

– 96 –



J
H
E
P
0
4
(
2
0
1
6
)
0
8
0

Representation Cohomology Multiplicity

(1,1) H1(End0(V2))⊕H1(End0(Ṽ2)) 4c2(V2) + 4c2(Ṽ2)− 2c1(Ṽ2)2 − 12

(1,3) H1(V2 ⊗ Ṽ∨2 )⊕H1(∧2V∨2 ⊗ ∧2Ṽ2) 2c2(Ṽ2) + 2c2(V2)− 5c1(Ṽ2)2 − 10

(4,3) H1(V∨2 ) c2(V2)− 1
2c1(Ṽ2)2 − 4

(4,1) H1(Ṽ2 ⊗ ∧2V∨2 )⊕H1(V2 ⊗ ∧2Ṽ∨2 ) c2(Ṽ2) + c2(V2)− 5c1(Ṽ2)2 − 8

(6,1) H1(Ṽ2 ⊗ V2) 2c2(V2) + 2c2(Ṽ2)− c1(Ṽ2)2 − 8

(6,3) H1(∧2V∨2 ) −1
2c1(Ṽ2)2 − 2

(4,3) H1(Ṽ2) c2(Ṽ2)− 1
2c1(Ṽ2)2 − 4

Table 31. The cohomology associated to each representation of the low-energy gauge group SU(4)×
SU(3)×U(1).

SU(4)×SU(3) Representation # from SU(7) multiplet decomposition # found after transition

(1,1) 4c2(V2)− 2c1(L)2 − 10 4c2(V2)− 2c1(L)2 − 12

(1,3) 2c2(V2)− 5c1(L)2 − 10 2c2(V2)− 5c1(L)2 − 10

(4,3) c2(V2)− 1
2c1(L)2 − 4 c2(V2)− 1

2c1(L)2 − 4

(4,1) c2(V2)− 5c1(L)2 − 8 c2(V2)− 5c1(L)2 − 8

(6,1) 2c2(V2)− c1(L)2 − 8 2c2(V2)− c1(L)2 − 8

(6,3) − 1
2c1(L)2 − 2 − 1

2c1(L)2 − 2

(4,3) − 1
2c1(L)2 − 2 − 1

2c1(L)2 − 4

Table 32. Matter content after Higgsing an SU(7) to an SU(4) × SU(3) theory, both via a naive

decomposition of the initial SU(7) multiplets and via a direct computation from the resulting

S(U(2)×U(2)) bundle.

For the case of a S(U(2) × U(2)) bundle obtained by a transition of the form (D.37) we

have the following topology.

c2(Ṽ2) = 0 (D.41)

c1(Ṽ2) = c1(L) (D.42)

Given this, and noting that the 6 of SU(4) is real, we obtain table 32, which gives the

number of SU(4) × SU(3) multiplets obtained by decomposing the SU(7) matter content,

compared to a direct computation of the spectrum of the four-dimensional theory given

the bundle topology after transition. Once more these results are consistent with the usual

understanding of such a Higgsing process and with the field theory analysis in section 2.3.2.
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