1,988 research outputs found

    Introducing Dialogue to Graduate Students

    Get PDF
    Scholars and practitioners in adult education commonly agree on the importance of communication and interaction in the adult classroom. Frequently, however, learners are not provided with guidelines on how to interact and communicate with others in such settings. This paper reports on an experiential orientation to the practice of dialogue for adults in a graduate progra

    Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition

    Get PDF
    The primate visual system achieves remarkable visual object recognition performance even in brief presentations and under changes to object exemplar, geometric transformations, and background variation (a.k.a. core visual object recognition). This remarkable performance is mediated by the representation formed in inferior temporal (IT) cortex. In parallel, recent advances in machine learning have led to ever higher performing models of object recognition using artificial deep neural networks (DNNs). It remains unclear, however, whether the representational performance of DNNs rivals that of the brain. To accurately produce such a comparison, a major difficulty has been a unifying metric that accounts for experimental limitations such as the amount of noise, the number of neural recording sites, and the number trials, and computational limitations such as the complexity of the decoding classifier and the number of classifier training examples. In this work we perform a direct comparison that corrects for these experimental limitations and computational considerations. As part of our methodology, we propose an extension of "kernel analysis" that measures the generalization accuracy as a function of representational complexity. Our evaluations show that, unlike previous bio-inspired models, the latest DNNs rival the representational performance of IT cortex on this visual object recognition task. Furthermore, we show that models that perform well on measures of representational performance also perform well on measures of representational similarity to IT and on measures of predicting individual IT multi-unit responses. Whether these DNNs rely on computational mechanisms similar to the primate visual system is yet to be determined, but, unlike all previous bio-inspired models, that possibility cannot be ruled out merely on representational performance grounds.Comment: 35 pages, 12 figures, extends and expands upon arXiv:1301.353

    Utilizing Gene Tree Variation to Identify Candidate Effector Genes in Zymoseptoria tritici

    Get PDF
    Zymoseptoria tritici is a host-specific, necrotrophic pathogen of wheat. Infection by Z. tritici is characterized by its extended latent period, which typically lasts two weeks, and is followed by extensive host cell death and rapid proliferation of fungal biomass. This work characterizes the level of genomic variation in 13 isolates for which we have measured virulence on 11 wheat cultivars with differential resistance genes. Between the reference isolate, IPO323, and the 13 Australian isolates we identified over 800,000 single nucleotide polymorphisms, of which ~10% had an effect on the coding regions of the genome. Furthermore we identified over 1700 probable presence/absence polymorphisms in genes across the Australian isolates using de novo assembly. Finally, we developed a gene tree sorting method that quickly identifies groups of isolates within a single gene alignment whose sequence haplotypes correspond with virulence scores on a single wheat cultivar. Using this method we have identified <100 candidate effector genes whose gene sequence correlates with virulence towards a wheat cultivar carrying a major resistance gene

    High-Responsivity Graphene-Boron Nitride Photodetector and Autocorrelator in a Silicon Photonic Integrated Circuit

    Full text link
    Graphene and other two-dimensional (2D) materials have emerged as promising materials for broadband and ultrafast photodetection and optical modulation. These optoelectronic capabilities can augment complementary metal-oxide-semiconductor (CMOS) devices for high-speed and low-power optical interconnects. Here, we demonstrate an on-chip ultrafast photodetector based on a two-dimensional heterostructure consisting of high-quality graphene encapsulated in hexagonal boron nitride. Coupled to the optical mode of a silicon waveguide, this 2D heterostructure-based photodetector exhibits a maximum responsivity of 0.36 A/W and high-speed operation with a 3 dB cut-off at 42 GHz. From photocurrent measurements as a function of the top-gate and source-drain voltages, we conclude that the photoresponse is consistent with hot electron mediated effects. At moderate peak powers above 50 mW, we observe a saturating photocurrent consistent with the mechanisms of electron-phonon supercollision cooling. This nonlinear photoresponse enables optical on-chip autocorrelation measurements with picosecond-scale timing resolution and exceptionally low peak powers

    Opioid receptor subtype-specific cross-tolerance to the effects of morphine on schedule-controlled behavior in mice

    Full text link
    Key-press responding of mice was maintained under a fixed-ratio (FR) 30-response schedule of food presentation. Successive 3-min periods during which the experimental chamber was illuminated and the schedule was in effect were preceded by 10-min time-out (TO) periods during which all lights were out and responses had no scheduled consequences. Intraperitoneal (IP) injections of saline or of cumulative doses of drugs were given at the start of each TO period. Successive saline injections had little or no effect on response rates, whereas the μ-opioid agonists morphine (0.1–10.0 mg/kg) and levorphanol (0.1–3.0 mg/kg), the κ-opioid agonist ethylketazocine (0.03–3.0 mg/kg), the mixed μ-/δ-opioid agonist metkephamid (0.1–10.0 mg/kg), and the nonopioid dissociative anesthetic ketamine (1.0–100.0 mg/kg) generally produced dose-related decreases in response rates. Following chronic administration of morphine (100.0 mg/kg/6 h), tolerance developed to the effects of morphine on rates of responding. In addition, a comparable degree of cross-tolerance developed to the effects of levorphanol and metkephamid. On the other hand, there was no evidence of cross-tolerance to the effects of ethylketazocine or ketamine. These results are consistent with the evidence suggesting that different opioid agonists exert their behavioral effects through distinct classes of opioid receptors.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46448/1/213_2004_Article_BF00177563.pd

    Comparison of Areas in Shadow from Imaging and Altimetry in the North Polar Region of Mercury and Implications for Polar Ice Deposits

    Get PDF
    Earth-based radar observations and results from the MESSENGER mission have provided strong evidence that permanently shadowed regions near Mercury's poles host deposits of water ice. MESSENGER's complete orbital image and topographic datasets enable Mercury's surface to be observed and modeled under an extensive range of illumination conditions. The shadowed regions of Mercury's north polar region from 65 deg N to 90 deg N were mapped by analyzing Mercury Dual Imaging System (MDIS) images and by modeling illumination with Mercury Laser Altimeter (MLA) topographic data. The two independent methods produced strong agreement in identifying shadowed areas. All large radar-bright deposits, those hosted within impact craters greater than or equal to 6 km in diameter, collocate with regions of shadow identified by both methods. However, only approximately 46% of the persistently shadowed areas determined from images and approximately 43% of the permanently shadowed areas derived from altimetry host radar-bright materials. Some sizable regions of shadow that do not host radar-bright deposits experience thermal conditions similar to those that do. The shadowed craters that lack radar-bright materials show a relation with longitude that is not related to the thermal environment, suggesting that the Earth-based radar observations of these locations may have been limited by viewing geometry, but it is also possible that water ice in these locations is insulated by anomalously thick lag deposits or that these shadowed regions do not host water ice

    Mercury's Magnetopause and Bow Shock from MESSENGER Magnetometer Observations

    Get PDF
    We have established the average shape and location of Mercury's magnetopause and bow shock from orbital observations by the MESSENGER Magnetometer. We fit empirical models to midpoints of boundary crossings and probability density maps of the magnetopause and bow shock positions. The magnetopause was fit by a surface for which the position R from the planetary dipole varies as [1 + cos(theta)]-alpha, where theta is the angle between R and the dipole-Sun line, the subsolar standoff distance Rss is 1.45 RM (where RM is Mercury's radius), and the flaring parameter alpha = 0.5. The average magnetopause shape and location were determined under a mean solar wind ram pressure PRam of 14.3 nPa. The best fit bow shock shape established under an average Alfvén Mach number (MA) of 6.6 is described by a hyperboloid having Rss = 1.96 RM and an eccentricity of 1.02. These boundaries move as PRam and MA vary, but their shapes remain unchanged. The magnetopause Rss varies from 1.55 to 1.35 RM for PRam in the range of 8.8-21.6 nPa. The bow shock Rss varies from 2.29 to 1.89 RM for MA in the range of 4.12-11.8. The boundaries are well approximated by figures of revolution. Additional quantifiable effects of the interplanetary magnetic field are masked by the large dynamic variability of these boundaries. The magnetotail surface is nearly cylindrical, with a radius of ~2.7 RM at a distance of 3 RM downstream of Mercury. By comparison, Earth's magnetotail flaring continues until a downstream distance of ~10 Rss

    Ultrafast 2D-IR spectroscopy of [NiFe] hydrogenase from E. coli reveals the role of the protein scaffold in controlling the active site environment

    Get PDF
    Ultrafast two-dimensional infrared (2D-IR) spectroscopy of Escherichia coli Hyd-1 (EcHyd-1) reveals the structural and dynamic influence of the protein scaffold on the Fe(CO)(CN)2 unit of the active site. Measurements on as-isolated EcHyd-1 probed a mixture of active site states including two, which we assign to Nir-SI/II, that have not been previously observed in the E. coli enzyme. Explicit assignment of carbonyl (CO) and cyanide (CN) stretching bands to each state is enabled by 2D-IR. Energies of vibrational levels up to and including two-quantum vibrationally excited states of the CO and CN modes have been determined along with the associated vibrational relaxation dynamics. The carbonyl stretching mode potential is well described by a Morse function and couples weakly to the cyanide stretching vibrations. In contrast, the two CN stretching modes exhibit extremely strong coupling, leading to the observation of formally forbidden vibrational transitions in the 2D-IR spectra. We show that the vibrational relaxation times and structural dynamics of the CO and CN ligand stretching modes of the enzyme active site differ markedly from those of a model compound K[CpFe(CO)(CN)2] in aqueous solution and conclude that the protein scaffold creates a unique biomolecular environment for the NiFe site that cannot be represented by analogy to simple models of solvation

    Plasma distribution in Mercury’s magnetosphere derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer observations

    Get PDF
    We assess the statistical spatial distribution of plasma in Mercury’s magnetosphere from observations of magnetic pressure deficits and plasma characteristics by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. The statistical distributions of proton flux and pressure were derived from 10 months of Fast Imaging Plasma Spectrometer (FIPS) observations obtained during the orbital phase of the MESSENGER mission. The Magnetometer-derived pressure distributions compare favorably with those deduced from the FIPS observations at locations where depressions in the magnetic field associated with the presence of enhanced plasma pressures are discernible in the Magnetometer data. The magnitudes of the magnetic pressure deficit and the plasma pressure agree on average, although the two measures of plasma pressure may deviate for individual events by as much as a factor of ~3. The FIPS distributions provide better statistics in regions where the plasma is more tenuous and reveal an enhanced plasma population near the magnetopause flanks resulting from direct entry of magnetosheath plasma into the low-latitude boundary layer of the magnetosphere. The plasma observations also exhibit a pronounced north-south asymmetry on the nightside, with markedly lower fluxes at low altitudes in the northern hemisphere than at higher altitudes in the south on the same field line. This asymmetry is consistent with particle loss to the southern hemisphere surface during bounce motion in Mercury’s offset dipole magnetic field
    corecore