343 research outputs found

    Insufficient nitrogen supply from symbiotic fixation reduces seasonal crop growth and nitrogen mobilization to seed in highly productive soybean crops

    Get PDF
    Nitrogen (N) supply can limit the yields of soybean [Glycine max (L.) Merr.] in highly productive environments. To explore the physiological mechanisms underlying this limitation, seasonal changes in N dynamics, aboveground dry matter (ADM) accumula- tion, leaf area index (LAI) and fraction of absorbed radiation (fAPAR) were compared in crops relying only on biological N2 fixation and available soil N (zero-N treatment) versus crops receiving N fertilizer (full-N treatment). Experiments were conducted in seven high-yield environments without water limitation, where crops received optimal management. In the zero-N treatment, biological N2 fixation was not sufficient to meet the N demand of the growing crop from early in the season up to beginning of seed filling. As a result, crop LAI, growth, N accumulation, radiation-use efficiency and fAPAR were consistently higher in the full-N than in the zero-N treatment, leading to improved seed set and yield. Similarly, plants in the full-N treatment had heavier seeds with higher N concentration because of greater N mobilization from vegetative organs to seeds. Future yield gains in high-yield soybean production systems will require an increase in biological N2 fixation, greater supply of N from soil or fertilizer, or allevia- tion of the trade-off between these two sources of N in order to meet the plant demand

    Insufficient nitrogen supply from symbiotic fixation reduces seasonal crop growth and nitrogen mobilization to seed in highly productive soybean crops

    Get PDF
    Nitrogen (N) supply can limit the yields of soybean [Glycine max (L.) Merr.] in highly productive environments. To explore the physiological mechanisms underlying this limitation, seasonal changes in N dynamics, aboveground dry matter (ADM) accumulation, leaf area index (LAI) and fraction of absorbed radiation (fAPAR) were compared in crops relying only on biological N2 fixation and available soil N (zero-N treatment) versus crops receiving N fertilizer (full-N treatment). Experiments were conducted in seven high-yield environments without water limitation, where crops received optimal management. In the zero-N treatment, biological N2 fixation was not sufficient to meet the N demand of the growing crop from early in the season up to beginning of seed filling. As a result, crop LAI, growth, N accumulation, radiation-use efficiency and fAPAR were consistently higher in the full-N than in the zero-N treatment, leading to improved seed set and yield. Similarly, plants in the full-N treatment had heavier seeds with higher N concentration because of greater N mobilization from vegetative organs to seeds. Future yield gains in high-yield soybean production systems will require an increase in biological N2 fixation, greater supply of N from soil or fertilizer, or alleviation of the trade-off between these two sources of N in order to meet the plant demand.Fil: Cafaro la Menza, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Nebraska - Lincoln; Estados UnidosFil: Monzon, Juan Pablo. Universidad de Nebraska - Lincoln; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaFil: Lindquist, John L.. Universidad de Nebraska - Lincoln; Estados UnidosFil: Arkebauer, Timothy J.. Universidad de Nebraska - Lincoln; Estados UnidosFil: Knops, Johannes M. H.. Universidad de Nebraska - Lincoln; Estados UnidosFil: Unkovich, Murray. University of Adelaide; AustraliaFil: Specht, James E.. Universidad de Nebraska - Lincoln; Estados UnidosFil: Grassini, Patricio. Universidad de Nebraska - Lincoln; Estados Unido

    Proceedings, Pot Chrysanthemum School, 1971

    Get PDF
    Space management / Robert W. Langhans -- Soils / D. C. Kiplinger -- Nutrition / George L. Staby -- Temperature and photoperiod / Joseph W. Love -- Automated short day control -- R. A. Aldrich -- Growth regulators / James B. Shanks -- Programming for insect-free pot mums / Richard K. Lindquist -- Programming for disease-free pot mums / Lester P. Nichols and Paul E. Nelson -- Where you go wrong / Harry K. Tayam

    The \u3ci\u3eChlorella variabilis\u3c/i\u3e NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex

    Get PDF
    Chlorella variabilis NC64A, a unicellular photosynthetic green alga (Trebouxiophyceae), is an intracellular photobiont of Paramecium bursaria and a model system for studying virus/algal interactions. We sequenced its 46-Mb nuclear genome, revealing an expansion of protein families that could have participated in adaptation to symbiosis. NC64A exhibits variations in GC content across its genome that correlate with global expression level, average intron size, and codon usage bias. Although Chlorella species have been assumed to be asexual and nonmotile, the NC64A genome encodes all the known meiosis-specific proteins and a subset of proteins found in flagella. We hypothesize that Chlorella might have retained a flagella-derived structure that could be involved in sexual reproduction. Furthermore, a survey of phytohormone pathways in chlorophyte algae identified algal orthologs of Arabidopsis thaliana genes involved in hormone biosynthesis and signaling, suggesting that these functions were established prior to the evolution of land plants. We show that the ability of Chlorella to produce chitinous cell walls likely resulted from the capture of metabolic genes by horizontal gene transfer from algal viruses, prokaryotes, or fungi. Analysis of the NC64A genome substantially advances our understanding of the green lineage evolution, including the genomic interplay with viruses and symbiosis between eukaryotes

    Stability of corn (\u3ci\u3eZea mays\u3c/i\u3e)- foxtail (\u3ci\u3eSetaria\u3c/i\u3e spp.) interference relationships

    Get PDF
    Variation in interference relationships have been shown for a number of crop-weed associations and may have an important effect on the implementation of decision support systems for weed management. Multiyear field experiments were conducted at eight locations to determine the stability of corn-foxtail interference relationships across years and locations. Two coefficients (I and A) of a rectangular hyperbola equation were estimated for each data set using nonlinear regression procedures. The I and A coefficients represent percent corn yield loss as foxtail density approaches zero and maximum percent corn yield loss, respectively. The coefficient I was stable across years at two locations and varied across years at four locations. Maximum yield loss (A) varied between years at one location. Both coefficients varied among locations. Although 3 to 4 foxtail plants m-1 row was a conservative estimate of the single-year economic threshold (Te) of foxtail density, variation in I and A resulted in a large variation in Te. Therefore, the utility of using common coefficient estimates to predict future crop yield loss from foxtail interference between years or among locations within a region is limited

    Stability of corn (\u3ci\u3eZea mays\u3c/i\u3e)- foxtail (\u3ci\u3eSetaria\u3c/i\u3e spp.) interference relationships

    Get PDF
    Variation in interference relationships have been shown for a number of crop-weed associations and may have an important effect on the implementation of decision support systems for weed management. Multiyear field experiments were conducted at eight locations to determine the stability of corn-foxtail interference relationships across years and locations. Two coefficients (I and A) of a rectangular hyperbola equation were estimated for each data set using nonlinear regression procedures. The I and A coefficients represent percent corn yield loss as foxtail density approaches zero and maximum percent corn yield loss, respectively. The coefficient I was stable across years at two locations and varied across years at four locations. Maximum yield loss (A) varied between years at one location. Both coefficients varied among locations. Although 3 to 4 foxtail plants m-1 row was a conservative estimate of the single-year economic threshold (Te) of foxtail density, variation in I and A resulted in a large variation in Te. Therefore, the utility of using common coefficient estimates to predict future crop yield loss from foxtail interference between years or among locations within a region is limited

    Corn Yield Potential and Optimal Soil Productivity in Irrigated Corn/Soybean Systems

    Get PDF
    In 1999, an interdisciplinary research team at the University of Nebraska established a field experiment to (1) quantify and understand the yield potential of corn and soybean under irrigated conditions, (2) identify efficient crop management practices to achieve yields that approach potential levels, and (3) determine the energy use efficiency, global warming and soil C-sequestration potential of intensively managed corn systems. The experiment compares systems that represent different levels of management intensity expressed as combinations of crop rotation (continuous corn, corn-soybean), plant density (low, medium, high) and nutrient management (recommended best management vs. intensive management). Detailed measurements include soil nutrient dynamics and C balance, crop growth and development, nutrient uptake and components of yield of corn and soybean, radiation use efficiency, soil surface fluxes of greenhouse gases, root biomass, C inputs through crop residues, translocation of non-structural carbohydrates, and amount, composition and activity of the microbial biomass. Selected results for corn are presented

    Corn Yield Potential and Optimal Soil Productivity in Irrigated Corn/Soybean Systems

    Get PDF
    In 1999, an interdisciplinary research team at the University of Nebraska established a field experiment to (1) quantify and understand the yield potential of corn and soybean under irrigated conditions, (2) identify efficient crop management practices to achieve yields that approach potential levels, and (3) determine the energy use efficiency, global warming and soil C-sequestration potential of intensively managed corn systems. The experiment compares systems that represent different levels of management intensity expressed as combinations of crop rotation (continuous corn, corn-soybean), plant density (low, medium, high) and nutrient management (recommended best management vs. intensive management). Detailed measurements include soil nutrient dynamics and C balance, crop growth and development, nutrient uptake and components of yield of corn and soybean, radiation use efficiency, soil surface fluxes of greenhouse gases, root biomass, C inputs through crop residues, translocation of non-structural carbohydrates, and amount, composition and activity of the microbial biomass. Selected results for corn are presented
    corecore