143 research outputs found

    Synthesis of Green Hydrocarbons Using the AIR TO FUELS™ Technology

    Get PDF
    Our AIR TO FUELS™ project is based off a process designed by Carbon Engineering by the same name which seeks to synthesize liquid fuels from capture carbon dioxide captured from the atmosphere. The need for reduced greenhouse gases in our atmosphere is more urgent than ever and becoming more dire by the day. Still, our society’s reliance on liquid fuels like gasoline, diesel, and jet fuel is deeply rooted in our infrastructure and certainly not changing quickly or soon. The AIR TO FUELS™ process seeks to tackle both of these problems by taking carbon dioxide out of the atmosphere in order to produce 2000 bbl/day of liquid fuels that work with our vast existing petroleum-based infrastructure. This AIR TO FUELS™ plant can be easily segmented into four different portions of the process, each accomplishing an integral step in the production of synthetic fuels. Perhaps the most important is the carbon capture step, making use of the patented Direct Air Capture technology to strip carbon dioxide from the air and purify it to the level needed for the production of syngas via the water-gas shift reaction. Syngas is then converted to alkanes using the nearly century old Fischer-Tropsch process and these alkanes are purified with a network of flash drums and a distillation column. Products generated from this final step are heavy alkanes (waxes and lubricants) to be sold, light gases to be burned in lieu of fuel gas in several of the gas-fired heaters used in the plant, and pure gasoline and diesel range alkanes, to be sold to refiners who will then blend these alkanes into usable fuels. Due to this final step necessitating the cooperation of oil refineries, it is germane to locate the AIR TO FUELS™ plant near large concentrations of these corporations, which indicates that the Gulf Coast of Texas is a suitable choice. This agrees with other factors such as high humidity, subsidies for renewable energy, and large swathes of available land, and as such, the area near the city of Corpus Christi, Texas is considered ideal. While the science and engineering behind our AIR TO FUELS™ process design are solid, its economic prospects are not. We hope to sell our product as green synthetic crude oil at 72/bbl,charginga1.2xpremiumforbothitscleanness(freeofheavymetals,NOx,andSOx)andgreenness.Thetotalcapitalinvestmentofourprojectexceeds72/bbl, charging a 1.2x premium for both its cleanness (free of heavy metals, NOx, and SOx) and greenness. The total capital investment of our project exceeds 2.2 billion, including 812millioninsolarpanelstoeaseour500MWelectricitycosts,812 million in solar panels to ease our 500 MW electricity costs, 378.5 million in electrolyzers to generate hydrogen, 300millionincatalystsandnormalchemicalprocessingequipment,and300 million in catalysts and normal chemical processing equipment, and 6.8 million in high capacity fans for our carbon capture system. On top of the massive capital investment, the daily operating costs of our design far outweigh our daily revenue, guaranteeing our project to be unprofitable. These daily costs come mostly from the utilities - the replenishment of our CO2 absorbing solution and its salts costs 86.74/bbl,andthecostoftheremainingutilities(coolingwater,steam,refrigerant,etc.)is86.74/bbl, and the cost of the remaining utilities (cooling water, steam, refrigerant, etc.) is 55.75/bbl. We hope that the ongoing development of solar panel and electrolyzer technologies alongside improvements in the efficiency of our design could one day make our AIR TO FUELS™ process profitable

    National Athletic Trainers\u27 Association Position Statement: Anabolic-Androgenic Steroids

    Get PDF
    Objective: This manuscript summarizes the best available scholarly evidence related to anabolic-androgenic steroids (AAS) as a reference for health care professionals, including athletic trainers, educators, and interested others. Background: Health care professionals associated with sports or exercise should understand and be prepared to educate others about AAS. These synthetic, testosteronebased derivatives are widely abused by athletes and nonathletes to gain athletic performance advantages, develop their physiques, and improve their body image. Although AAS can be ergogenic, their abuse may lead to numerous negative health effects. Recommendations: Abusers of AAS often rely on questionable information sources. Sports medicine professionals can therefore serve an important role by providing accurate, reliable information. The recommendations provide health care professionals with a current and accurate synopsis of the AAS-related research

    Subtumoral analysis of PRINT nanoparticle distribution reveals targeting variation based on cellular and particle properties

    Get PDF
    AbstractThe biological activity of nanoparticle-directed therapies critically depends on cellular targeting. We examined the subtumoral fate of Particle Replication in Non-Wetting Templates (PRINT) nanoparticles in a xenografted melanoma tumor model by multi-color flow cytometry and in vivo confocal tumor imaging. These approaches were compared with the typical method of whole-organ quantification by radiolabeling. In contrast to radioactivity based detection which demonstrated a linear dose-dependent accumulation in the organ, flow cytometry revealed that particle association with cancer cells became dose-independent with increased particle doses and that the majority of the nanoparticles in the tumor were associated with cancer cells despite a low fractional association. In vivo imaging demonstrated an inverse relationship between tumor cell association and other immune cells, likely macrophages. Finally, variation in particle size nonuniformly affected subtumoral association. This study demonstrates the importance of subtumoral targeting when assessing nanoparticle activity within tumors.From the Clinical EditorParticle Replication in Non-Wetting Templates (PRINT) technology allows the production of nanoparticles with uniform size. The authors in the study utilized PRINT-produced nanoparticles to investigate specific tumor uptake by multi-color flow cytometry and in vivo confocal tumor imaging. This approach allowed further in-depth correlation between nanoparticle properties and tumor cells and should improve future design

    WormBase 2016: expanding to enable helminth genomic research

    Get PDF
    WormBase (www.wormbase.org) is a central repository for research data on the biology, genetics and genomics of Caenorhabditis elegans and other nematodes. The project has evolved from its original remit to collect and integrate all data for a single species, and now extends to numerous nematodes, ranging from evolutionary comparators of C. elegans to parasitic species that threaten plant, animal and human health. Research activity using C. elegans as a model system is as vibrant as ever, and we have created new tools for community curation in response to the ever-increasing volume and complexity of data. To better allow users to navigate their way through these data, we have made a number of improvements to our main website, including new tools for browsing genomic features and ontology annotations. Finally, we have developed a new portal for parasitic worm genomes. WormBase ParaSite (parasite.wormbase.org) contains all publicly available nematode and platyhelminth annotated genome sequences, and is designed specifically to support helminth genomic research

    RNAcentral: A vision for an international database of RNA sequences

    Get PDF
    During the last decade there has been a great increase in the number of noncoding RNA genes identified, including new classes such as microRNAs and piRNAs. There is also a large growth in the amount of experimental characterization of these RNA components. Despite this growth in information, it is still difficult for researchers to access RNA data, because key data resources for noncoding RNAs have not yet been created. The most pressing omission is the lack of a comprehensive RNA sequence database, much like UniProt, which provides a comprehensive set of protein knowledge. In this article we propose the creation of a new open public resource that we term RNAcentral, which will contain a comprehensive collection of RNA sequences and fill an important gap in the provision of biomedical databases. We envision RNA researchers from all over the world joining a federated RNAcentral network, contributing specialized knowledge and databases. RNAcentral would centralize key data that are currently held across a variety of databases, allowing researchers instant access to a single, unified resource. This resource would facilitate the next generation of RNA research and help drive further discoveries, including those that improve food production and human and animal health. We encourage additional RNA database resources and research groups to join this effort. We aim to obtain international network funding to further this endeavor

    An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations

    Get PDF
    Advances in genome sequencing and assembly technologies are generating many high-quality genome sequences, but assemblies of large, repeat-rich polyploid genomes, such as that of bread wheat, remain fragmented and incomplete. We have generated a new wheat whole-genome shotgun sequence assembly using a combination of optimized data types and an assembly algorithm designed to deal with large and complex genomes. The new assembly represents >78% of the genome with a scaffold N50 of 88.8 kb that has a high fidelity to the input data. Our new annotation combines strand-specific Illumina RNA-seq and Pacific Biosciences (PacBio) full-length cDNAs to identify 104,091 high-confidence protein-coding genes and 10,156 noncoding RNA genes. We confirmed three known and identified one novel genome rearrangements. Our approach enables the rapid and scalable assembly of wheat genomes, the identification of structural variants, and the definition of complete gene models, all powerful resources for trait analysis and breeding of this key global crop

    High-Throughput Proteomics Detection of Novel Splice Isoforms in Human Platelets

    Get PDF
    Alternative splicing (AS) is an intrinsic regulatory mechanism of all metazoans. Recent findings suggest that 100% of multiexonic human genes give rise to splice isoforms. AS can be specific to tissue type, environment or developmentally regulated. Splice variants have also been implicated in various diseases including cancer. Detection of these variants will enhance our understanding of the complexity of the human genome and provide disease-specific and prognostic biomarkers. We adopted a proteomics approach to identify exon skip events - the most common form of AS. We constructed a database harboring the peptide sequences derived from all hypothetical exon skip junctions in the human genome. Searching tandem mass spectrometry (MS/MS) data against the database allows the detection of exon skip events, directly at the protein level. Here we describe the application of this approach to human platelets, including the mRNA-based verification of novel splice isoforms of ITGA2, NPEPPS and FH. This methodology is applicable to all new or existing MS/MS datasets

    The UniProt-GO Annotation database in 2011

    Get PDF
    The GO annotation dataset provided by the UniProt Consortium (GOA: http://www.ebi.ac.uk/GOA) is a comprehensive set of evidenced-based associations between terms from the Gene Ontology resource and UniProtKB proteins. Currently supplying over 100 million annotations to 11 million proteins in more than 360 000 taxa, this resource has increased 2-fold over the last 2 years and has benefited from a wealth of checks to improve annotation correctness and consistency as well as now supplying a greater information content enabled by GO Consortium annotation format developments. Detailed, manual GO annotations obtained from the curation of peer-reviewed papers are directly contributed by all UniProt curators and supplemented with manual and electronic annotations from 36 model organism and domain-focused scientific resources. The inclusion of high-quality, automatic annotation predictions ensures the UniProt GO annotation dataset supplies functional information to a wide range of proteins, including those from poorly characterized, non-model organism species. UniProt GO annotations are freely available in a range of formats accessible by both file downloads and web-based views. In addition, the introduction of a new, normalized file format in 2010 has made for easier handling of the complete UniProt-GOA data set
    corecore