37 research outputs found

    Purity of transferred CD8+ T cells is crucial for safety and efficacy of combinatorial tumor immunotherapy in the absence of SHP-1

    Get PDF
    Adoptive transfer of tumor-specific cytotoxic T cells is a promising advance in cancer therapy. Similarly, checkpoint inhibition has shown striking clinical results in some patients. Here we combine adoptive cell transfer with ablation of the checkpoint protein Src homology 2-domain-containing phosphatase 1 (SHP-1, Ptpn6). Naturally occurring motheaten mice lack SHP-1 and do not survive weaning due to extensive immunopathology. To circumvent this limitation, we created a novel SHP-1(null) mouse that is viable up to 12 weeks of age by knocking out IL1r1. Using this model, we demonstrate that the absence of SHP-1 augments the ability of adoptively transferred CD8(+) T cells to control tumor growth. This therapeutic effect was only observed in situations where T-cell numbers were limited, analogous to clinical settings. However, adoptive transfer of non-CD8(+) SHP-1(null) hematopoietic cells resulted in lethal motheaten-like pathology, indicating that systemic inhibition of SHP-1 could have serious adverse effects. Despite this caveat, our findings support the development of SHP-1 inhibition strategies in human T cells to complement adoptive transfer therapies in the clinic

    Human CLEC9A antibodies deliver Wilms' tumor 1 (WT1) antigen to CD141+ dendritic cells to activate naïve and memory WT1‐specific CD8+ T cells

    Get PDF
    Objectives Vaccines that prime Wilms' tumor 1 (WT1)‐specific CD8+ T cells are attractive cancer immunotherapies. However, immunogenicity and clinical response rates may be enhanced by delivering WT1 to CD141+ dendritic cells (DCs). The C‐type lectin‐like receptor CLEC9A is expressed exclusively by CD141+ DCs and regulates CD8+ T‐cell responses. We developed a new vaccine comprising a human anti‐CLEC9A antibody fused to WT1 and investigated its capacity to target human CD141+ DCs and activate naïve and memory WT1‐specific CD8+ T cells. Methods WT1 was genetically fused to antibodies specific for human CLEC9A, DEC‐205 or β‐galactosidase (untargeted control). Activation of WT1‐specific CD8+ T‐cell lines following cross‐presentation by CD141+ DCs was quantified by IFNγ ELISPOT. Humanised mice reconstituted with human immune cell subsets, including a repertoire of naïve WT1‐specific CD8+ T cells, were used to investigate naïve WT1‐specific CD8+ T‐cell priming. Results The CLEC9A‐WT1 vaccine promoted cross‐presentation of WT1 epitopes to CD8+ T cells and mediated priming of naïve CD8+ T cells more effectively than the DEC‐205‐WT1 and untargeted control‐WT1 vaccines. Conclusions Delivery of WT1 to CD141+ DCs via CLEC9A stimulates CD8+ T cells more potently than either untargeted delivery or widespread delivery to all Ag‐presenting cells via DEC‐205, suggesting that cross‐presentation by CD141+ DCs is sufficient for effective CD8+ T‐cell priming in humans. The CLEC9A‐WT1 vaccine is a promising candidate immunotherapy for malignancies that express WT1

    ADAM17-dependent proteolysis of L-selectin promotes early clonal expansion of cytotoxic T cells

    Get PDF
    L-selectin on T-cells is best known as an adhesion molecule that supports recruitment of blood-borne naïve and central memory cells into lymph nodes. Proteolytic shedding of the ectodomain is thought to redirect activated T-cells from lymph nodes to sites of infection. However, we have shown that activated T-cells re-express L-selectin before lymph node egress and use L-selectin to locate to virus-infected tissues. Therefore, we considered other roles for L-selectin proteolysis during T cell activation. In this study, we used T cells expressing cleavable or non-cleavable L-selectin and determined the impact of L-selectin proteolysis on T cell activation in virus-infected mice. We confirm an essential and non-redundant role for ADAM17 in TCR-induced proteolysis of L-selectin in mouse and human T cells and show that L-selectin cleavage does not regulate T cell activation measured by CD69 or TCR internalisation. Following virus infection of mice, L-selectin proteolysis promoted early clonal expansion of cytotoxic T cells resulting in an 8-fold increase over T cells unable to cleave L-selectin. T cells unable to cleave L-selectin showed delayed proliferation in vitro which correlated with lower CD25 expression. Based on these results, we propose that ADAM17-dependent proteolysis of L-selectin should be considered a regulator of T-cell activation at sites of immune activity

    Clearance of interstitial fluid (ISF) and CSF (CLIC) group-part of Vascular Professional Interest Area (PIA): Cerebrovascular disease and the failure of elimination of Amyloid-β from the brain and retina with age and Alzheimer's disease-Opportunities for Therapy.

    Get PDF
    Two of the key functions of arteries in the brain are (1) the well-recognized supply of blood via the vascular lumen and (2) the emerging role for the arterial walls as routes for the elimination of interstitial fluid (ISF) and soluble metabolites, such as amyloid beta (Aβ), from the brain and retina. As the brain and retina possess no conventional lymphatic vessels, fluid drainage toward peripheral lymph nodes is mediated via transport along basement membranes in the walls of capillaries and arteries that form the intramural peri-arterial drainage (IPAD) system. IPAD tends to fail as arteries age but the mechanisms underlying the failure are unclear. In some people this is reflected in the accumulation of Aβ plaques in the brain in Alzheimer's disease (AD) and deposition of Aβ within artery walls as cerebral amyloid angiopathy (CAA). Knowledge of the dynamics of IPAD and why it fails with age is essential for establishing diagnostic tests for the early stages of the disease and for devising therapies that promote the clearance of Aβ in the prevention and treatment of AD and CAA. This editorial is intended to introduce the rationale that has led to the establishment of the Clearance of Interstitial Fluid (ISF) and CSF (CLIC) group, within the Vascular Professional Interest Area of the Alzheimer's Association International Society to Advance Alzheimer's Research and Treatment

    Germline bias dictates cross-serotype reactivity in a common dengue-virus-specific CD8(+) T cell response.

    Get PDF
    Adaptive immune responses protect against infection with dengue virus (DENV), yet cross-reactivity with distinct serotypes can precipitate life-threatening clinical disease. We found that clonotypes expressing the T cell antigen receptor (TCR) β-chain variable region 11 (TRBV11-2) were 'preferentially' activated and mobilized within immunodominant human-leukocyte-antigen-(HLA)-A*11:01-restricted CD8(+) T cell populations specific for variants of the nonstructural protein epitope NS3133 that characterize the serotypes DENV1, DENV3 and DENV4. In contrast, the NS3133-DENV2-specific repertoire was largely devoid of such TCRs. Structural analysis of a representative TRBV11-2(+) TCR demonstrated that cross-serotype reactivity was governed by unique interplay between the variable antigenic determinant and germline-encoded residues in the second β-chain complementarity-determining region (CDR2β). Extensive mutagenesis studies of three distinct TRBV11-2(+) TCRs further confirmed that antigen recognition was dependent on key contacts between the serotype-defined peptide and discrete residues in the CDR2β loop. Collectively, these data reveal an innate-like mode of epitope recognition with potential implications for the outcome of sequential exposure to heterologous DENVs

    TRAV1-2<sup>+</sup> CD8<sup>+</sup> T-cells including oligoconal expansions of MAIT cells are enriched in the airways in human tuberculosis

    Get PDF
    Mucosal-associated invariant T (MAIT) cells typically express a TRAV1-2+ semi-invariant TCRα that enables recognition of bacterial, mycobacterial, and fungal riboflavin metabolites presented by MR1. MAIT cells are associated with immune control of bacterial and mycobacterial infections in murine models. Here, we report that a population of pro-inflammatory TRAV1-2+ CD8+ T cells are present in the airways and lungs of healthy individuals and are enriched in bronchoalveolar fluid of patients with active pulmonary tuberculosis (TB). High-throughput T cell receptor analysis reveals oligoclonal expansions of canonical and donor-unique TRAV1-2+ MAIT-consistent TCRα sequences within this population. Some of these cells demonstrate MR1-restricted mycobacterial reactivity and phenotypes suggestive of MAIT cell identity. These findings demonstrate enrichment of TRAV1-2+ CD8+ T cells with MAIT or MAIT-like features in the airways during active TB and suggest a role for these cells in the human pulmonary immune response to Mycobacterium tuberculosis

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    The temperature dependence of the interaction of NO + CO on Pt{1 0 0}

    No full text
    Infrared reflection absorption spectroscopy together with mass spectrometry has been used to investigate the interaction of NO and CO on Pt{1 0 0}, initially prepared in the reconstructed `hex' phase, under ambient pressures of these gases, in the temperature range 300–500 K. The results allow the local and total coverages of adsorbed CO and NO to be related to the rate of reaction to produce gas phase CO2, and provide insight into the species present on the surface during the so-called low temperature oscillatory reaction regime of this process. At temperatures below that at which NO dissociation occurs (approximately 390–400 K) adsorption is controlled by the non-reactive displacement of NO by CO and results in a CO-poisoned surface. Above 400 K when significant CO2 production occurs, the NO coverage increases to produce a surface with NO and CO fully intermixed; the increase in NO coverage is attributed to the higher rate of NO arrival from the gas phase (with a partial pressure ratio of PNO:PCO>1) at free surface sites created by NO dissociation and subsequent reaction with CO. The competition between these two processes of non-reactive NO displacement by CO and reactive displacement of CO by NO is proposed to determine the parameter space of the low temperature oscillatory regime. Rapid equilibration between bridged and atop CO species leads to them appearing to exhibit identical reaction behaviour. Particularly at the lowest reaction temperatures (around 400 K), islands of pure CO may coexist on the surface but not participate in the reaction. Under conditions corresponding to the high temperature oscillatory regime, small quantities of absorbed CO, but no NO, are seen on the surface

    A CO2 Surface Molecular Precursor during CO Oxidation over Pt{100}

    No full text
    Using different isotopologues of the reactant gases CO and O2, infrared reflection absorption spectroscopy (IRAS) has been used to investigate the transient surface species on the Pt{100} surface under reaction conditions which was first shown to give rise to an absorption band around 1630 cm-1 by Hong and Richardson (J. Phys. Chem. 1993, 97, 1258). The results show that this band cannot be attributed to a C-O stretching frequency of the CO from the gas-phase incorporated into a CO-O surface complex, such as that identified as the transition state in recent density-functional theory (DFT) calculations of the Pt{111}/CO + O2 and Pt{100}/CO + NO reactions. The IRAS results are consistent, however, with a surface O-C-O species of low symmetry in which the IR band is due to a C-O stretching mode involving an O atom arising from the molecular O2, and estimates of the desorption energy of this species show it is chemisorbed. This surface intermediate may also be involved in the CO + NO oxidation reaction over Pt{100}, but the steady-state coverage at the higher reaction temperature would preclude its observation in IRAS. The results suggest that further DFT calculations exploring alternative reaction paths may be of value
    corecore