39 research outputs found

    Statin regulated ERK5 stimulates tight junction formation and reduces permeability in human cardiac endothelial cells

    Get PDF
    The MEKK3/MEK5/ERK5 signaling axis is required for cardiovascular development in vivo. We analyzed the physiological role of ERK5 in cardiac endothelial cells and the consequence of activation of this kinase by the statin class of HMG Co‐A reductase inhibitor drugs. We utilized human cardiac microvascular endothelial cells (HCMECs) and altered ERK5 expression using siRNA mediated gene silencing or overexpression of constitutively active MEK5 and ERK5 to reveal a role for ERK5 in regulating endothelial tight junction formation and cell permeability. Statin treatment of HCMECs stimulated activation of ERK5 and translocation to the plasma membrane resulting in co‐localization with the tight junction protein ZO‐1 and a concomitant reduction in endothelial cell permeability. Statin mediated activation of ERK5 was a consequence of reduced isoprenoid synthesis following HMG Co‐A reductase inhibition. Statin pretreatment could overcome the effect of doxorubicin in reducing endothelial tight junction formation and prevent increased permeability. Our data provide the first evidence for the role of ERK5 in regulating endothelial tight junction formation and endothelial cell permeability. Statin mediated ERK5 activation and the resulting decrease in cardiac endothelial cell permeability may contribute to the cardioprotective effects of statins in reducing doxorubicin‐induced cardiotoxicity

    Cardiac Non-myocyte Cells Show Enhanced Pharmacological Function Suggestive of Contractile Maturity in Stem Cell Derived Cardiomyocyte Microtissues

    Get PDF
    The immature phenotype of stem cell derived cardiomyocytes is a significant barrier to their use in translational medicine and pre-clinical in vitro drug toxicity and pharmacological analysis. Here we have assessed the contribution of non-myocyte cells on the contractile function of co-cultured human embryonic stem cell derived cardiomyocytes (hESC-CMs) in spheroid microtissue format. Microtissues were formed using a scaffold free 96-well cell suspension method from hESC-CM cultured alone (CM microtissues) or in combination with human primary cardiac microvascular endothelial cells and cardiac fibroblasts (CMEF microtissues). Contractility was characterized with fluorescence and video-based edge detection. CMEF microtissues displayed greater Ca(2+ )transient amplitudes, enhanced spontaneous contraction rate and remarkably enhanced contractile function in response to both positive and negative inotropic drugs, suggesting a more mature contractile phenotype than CM microtissues. In addition, for several drugs the enhanced contractile response was not apparent when endothelial cell or fibroblasts from a non-cardiac tissue were used as the ancillary cells. Further evidence of maturity for CMEF microtissues was shown with increased expression of genes that encode proteins critical in cardiac Ca(2+ )handling (S100A1), sarcomere assembly (telethonin/TCAP) and β-adrenergic receptor signalling. Our data shows that compared with single cell-type cardiomyocyte in vitro models, CMEF microtissues are superior at predicting the inotropic effects of drugs, demonstrating the critical contribution of cardiac non-myocyte cells in mediating functional cardiotoxicity

    Innovative organotypic in vitro models for safety assessment: aligning with regulatory requirements and understanding models of the heart, skin, and liver as paradigms

    Get PDF
    The development of improved, innovative models for the detection of toxicity of drugs, chemicals, or chemicals in cosmetics is crucial to efficiently bring new products safely to market in a cost-effective and timely manner. In addition, improvement in models to detect toxicity may reduce the incidence of unexpected post-marketing toxicity and reduce or eliminate the need for animal testing. The safety of novel products of the pharmaceutical, chemical, or cosmetics industry must be assured; therefore, toxicological properties need to be assessed. Accepted methods for gathering the information required by law for approval of substances are often animal methods. To reduce, refine, and replace animal testing, innovative organotypic in vitro models have emerged. Such models appear at different levels of complexity ranging from simpler, self-organized three-dimensional (3D) cell cultures up to more advanced scaffold-based co-cultures consisting of multiple cell types. This review provides an overview of recent developments in the field of toxicity testing with in vitro models for three major organ types: heart, skin, and liver. This review also examines regulatory aspects of such models in Europe and the UK, and summarizes best practices to facilitate the acceptance and appropriate use of advanced in vitro models

    Cardiotoxic drugs Herceptin and doxorubicin inhibit cardiac microvascular endothelial cell barrier formation resulting in increased drug permeability

    Get PDF
    Cardiotoxicity induced by anti-cancer therapeutics is a severe, and potentially fatal, adverse reaction of the heart in response to certain drugs. Current in vitro approaches to assess cardiotoxicity have focused on analysing cardiomyocytes. More recently it has become apparent that non-cardiomyocyte cells of the heart can potentially contribute to cardiotoxicity. Herceptin and doxorubicin are known to induce cardiotoxicity in the clinic. The effect of these drugs on the endothelial tight junction barrier was tested by analysing tight junction formation and zona occludens-1 (ZO-1) levels, revealing that Herceptin and doxorubicin are able to induce barrier perturbment and decrease barrier function in human cardiac microvascular endothelial cells (HCMECs) leading to increased permeability. Herceptin treatment had no effect on the tight junction barrier function in human dermal and human brain microvascular endothelial cells. HCMECs showed detectable levels of HER2 compared with the other endothelial cells suggesting that Herceptin binding to HER2 in these cells may interfere with tight junction formation. Our data suggests that doxorubicin and Herceptin can affect tight junction formation in the cardiac microvasculature leading to increased drug permeability and adverse effects on the cardiac myocytes

    Area studies and geography: Trajectories and manifesto

    No full text
    We introduce the following set of essays on reformatting the relationship between area studies and geography and reflect on our individual and collective negotiation of this relationship. This leads us to revisit some key area studies’ controversies and agendas, notably strategies for comparison. Drawing on the work of Benedict Anderson and other comparatively minded scholars, we advocate staging comparisons in terms of difference/similarity, expectancy/surprise, present/past and familiarity/strangeness.</jats:p
    corecore