66 research outputs found

    Where do herbivore-induced plant volatiles go?

    Get PDF
    Herbivore induced plant volatiles (HIPV) are specific volatile organic compounds (VOC) that a plant produces in response to herbivory. Some HIPVs are only produced after damage, while others are also produced by intact plants, but in lower quantities. Among the known functions of HIPVs are within plant volatile signalling to activate systemic plant defences, the priming and activation of defences in neighbouring plants and the attraction of natural enemies of herbivores. When released into the atmosphere a plant’s control over the produced compounds ends. However, many of the HIPVs are highly reactive with atmospheric oxidants and their atmospheric life times could be relatively short, often only a few minutes. We summarise the potential ecological and atmospheric processes that involve the reaction products of HIPVs in their gaseous, liquid and solid secondary organic aerosol (SOA) forms, both in the atmosphere and after deposition on plant surfaces. A potential negative feedback loop, based on the reactions forming SOA from HIPV and the associated stimulation of sun screening cloud formation is presented. This hypothesis is based on recent field surveys in the geographical areas facing greatest degree of global warming and insect outbreaks. Furthermore, we discuss how these processes could benefit the individual plant or conspecifics that originally released the HIPVs into the atmosphere. Further ecological studies should aim to elucidate the possible reasons for biosynthesis of short-lived volatile compounds to have evolved as a response to external biotic damage to plants

    Herbivore Gender Effects on Volatile Induction in Aspen and on Olfactory Responses in Leaf Beetles

    Get PDF
    Hybrid aspen (Populus tremula × tremuloides Michx.) is a fast-growing tree species used for short-rotation forestry in northern latitudes. Aspen species have a rich herbivore fauna, including defoliating leaf beetles that induce emissions of volatile organic compounds (VOCs) when feeding on aspen leaves. We investigated the differential induction of VOCs by male and female Phratora laticollis leaf beetles feeding on hybrid aspen and the differences in the orientation of beetles in response to gender-specific induced VOCs. The hypotheses for the study were (1) the VOCs in the headspace of plants infested with beetles of the two genders individually and in mixed aggregates would vary subtly, and (2) foraging adult beetles would be able to detect differences in VOC blends and use them to fine-tune their orientation choices. In Y-tube bioassays, both females and males preferred VOCs from leaves damaged by one gender (females or males) over undamaged leaves. However, if leaves were damaged by a two-gender population, neither females nor males indicated a preference over volatiles of undamaged leaves. Leaves damaged by both beetle genders simultaneously had significantly increased green leaf volatile (GLV), benzenoid and homoterpene emissions compared to undamaged leaves. Emissions of these compounds possibly indicate higher herbivore pressure and a higher risk of attack by parasitoids and predators and could thus be the cause of the lack of beetle preference. Our findings provide new basic information on gender-based host plant selection by herbivores and may be helpful in the development of sustainable biogenic VOC-based herbivore-control methods for intensive short-rotation hybrid aspen production

    Epichloe Endophytes Alter Inducible Indirect Defences in Host Grasses

    Get PDF
    Epichloe endophytes are common symbionts living asymptomatically in pooid grasses and may provide chemical defences against herbivorous insects. While the mechanisms underlying these fungal defences have been well studied, it remains unknown whether endophyte presence affects the host's own defences. We addressed this issue by examining variation in the impact of Epichloe on constitutive and herbivore-induced emissions of volatile organic compounds (VOC), a well-known indirect plant defence, between two grass species, Schedonorus phoenix (ex. Festuca arundinacea; tall fescue) and Festuca pratensis (meadow fescue). We found that feeding by a generalist aphid species, Rhopalosiphum padi, induced VOC emissions by uninfected plants of both grass species but to varying extents, while mechanical wounding failed to do so in both species after one day of damage. Interestingly, regardless of damage treatment, Epichloe uncinata-infected F. pratensis emitted significantly lower quantities of VOCs than their uninfected counterparts. In contrast, Epichloe coenophiala-infected S. phoenix did not differ from their uninfected counterparts in constitutive VOC emissions but tended to increase VOC emissions under intense aphid feeding. A multivariate analysis showed that endophyte status imposed stronger differences in VOC profiles of F. pratensis than damage treatment, while the reverse was true for S. phoenix. Additionally, both endophytes inhibited R. padi population growth as measured by aphid dry biomass, with the inhibition appearing greater in E. uncinata-infected F. pratensis. Our results suggest, not only that Epichloe endophytes may play important roles in mediating host VOC responses to herbivory, but also that the magnitude and direction of such responses may vary with the identity of the Epichloe-grass symbiosis. Whether Epichloe-mediated host VOC responses will eventually translate into effects on higher trophic levels merits future investigation.</p

    Soil microbiota explain differences in herbivore resistance between native and invasive populations of a perennial herb

    Get PDF
    1. Soil microbiota can either slow down or facilitate plant invasions through their effects on plant performance. Associations with soil microbiota can also modify other plant traits such as herbivore resistance, which can indirectly affect the outcome of plant introductions.2. We studied the effects of soil microbiota on the perennial herbaceous legume Lupinus polyphyllus that hosts nitrogen-fixing mutualistic bacteria. We compared the plant performance, herbivore resistance and volatile organic compounds (VOCs) of plants from native (North American) and invasive (Finnish) populations of the species that were inoculated with intact or autoclaved soil from an invasive population.3. We found that plants of both origins greatly benefited from the intact soil inoculum with respect to all performance measures considered, suggesting that beneficial nitrogen-fixing rhizobia in the soil play a major role in shaping plant phenotypes. For three traits, effects of the intact soil inoculum were stronger in plants of native origin than in plants of invasive origin (number of leaves, herbivore resistance and total biomass). With the intact soil inoculum, plants of invasive origin were more resistant to snails than plants of native origin. Strikingly, differences in resistance to snails between plants of different origins disappeared entirely when soil microbes were reduced. Soil inoculum treatment altered the composition of the leaf VOC bouquet similarly regardless of plant origin.4. Synthesis. These results demonstrate the ability of Lupinus polyphyllus to associate with and benefit from putatively novel soil microbiota including rhizobia, which has likely contributed to its invasion success. Furthermore, it appears that the invasive populations have adapted to be less reliant on their symbionts, which further facilitates species spread. To our knowledge, this is the first study to demonstrate that differences in herbivore resistance between native and invasive plant populations of the same species can depend entirely on soil microbiota.</p

    Ozone affects plant, insect, and soil microbial communities: A threat to terrestrial ecosystems and biodiversity

    Get PDF
    Elevated tropospheric ozone concentrations induce adverse effects in plants. We reviewed how ozone affects (i) the composition and diversity of plant communities by affecting key physiological traits; (ii) foliar chemistry and the emission of volatiles, thereby affecting plant-plant competition, plant-insect interactions, and the composition of insect communities; and (iii) plant-soil-microbe interactions and the composition of soil communities by disrupting plant litterfall and altering root exudation, soil enzymatic activities, decomposition, and nutrient cycling. The community composition of soil microbes is consequently changed, and alpha diversity is often reduced. The effects depend on the environment and vary across space and time. We suggest that Atlantic islands in the Northern Hemisphere, the Mediterranean Basin, equatorial Africa, Ethiopia, the Indian coastline, the Himalayan region, southern Asia, and Japan have high endemic richness at high ozone risk by 2100

    Concurrent anthropogenic air pollutants enhance recruitment of a specialist parasitoid

    Get PDF
    Air pollutants—such as nitrogen oxides, emitted in diesel exhaust, and ozone (O3)—disrupt interactions between plants, the insect herbivore pests that feed upon them and natural enemies of those herbivores (e.g. parasitoids). Using eight field-based rings that emit regulated quantities of diesel exhaust and O3, we investigated how both pollutants, individually and in combination, altered the attraction and parasitism rate of a specialist parasitoid (Diaeretiella rapae) on aphid-infested and un-infested Brassica napus plants. Individual effects of O3 decreased D. rapae abundance and emergence by 37% and 55%, respectively, compared with ambient (control) conditions. When O3 and diesel exhaust were emitted concomitantly, D. rapae abundance and emergence increased by 79% and 181%, respectively, relative to control conditions. This attraction response occurred regardless of whether plants were infested with aphids and was associated with an increase in the concentration of aliphatic glucosinolates, especially gluconapin (3-butenyl-glucosinolate), within B. napus leaves. Plant defensive responses and their ability to attract natural aphid enemies may be beneficially impacted by pollution exposure. These results demonstrate the importance of incorporating multiple air pollutants when considering the effects of air pollution on plant–insect interactions

    Unravelling the functions of biogenic volatiles in boreal and temperate forest ecosystems

    Get PDF
    Living trees are the main source of biogenic volatile organic compounds (BVOCs) in forest ecosystems, but substantial emissions originate from leaf and wood litter, the rhizosphere and from microorganisms. This review focuses on temperate and boreal forest ecosystems and the roles of BVOCs in ecosystem function, from the leaf to the forest canopy and from the forest soil to the atmosphere level. Moreover, emphasis is given to the question of how BVOCs will help forests adapt to environmental stress, particularly biotic stress related to climate change. Trees use their vascular system and emissions of BVOCs in internal communication, but emitted BVOCs have extended the communication to tree population and whole community levels and beyond. Future forestry practices should consider the importance of BVOCs in attraction and repulsion of attacking bark beetles, but also take an advantage of herbivore-induced BVOCs to improve the efficiency of natural enemies of herbivores. BVOCs are extensively involved in ecosystem services provided by forests including the positive effects on human health. BVOCs have a key role in ozone formation but also in ozone quenching. Oxidation products form secondary organic aerosols that disperse sunlight deeper into the forest canopy, and affect cloud formation and ultimately the climate. We also discuss the technical side of reliable BVOC sampling of forest trees for future interdisciplinary studies that should bridge the gaps between the forest sciences, health sciences, chemical ecology, conservation biology, tree physiology and atmospheric science
    • …
    corecore