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Abstract
Living trees are the main source of biogenic volatile organic compounds (BVOCs) in forest ecosystems, but substantial 
emissions originate from leaf and wood litter, the rhizosphere and from microorganisms. This review focuses on temperate 
and boreal forest ecosystems and the roles of BVOCs in ecosystem function, from the leaf to the forest canopy and from 
the forest soil to the atmosphere level. Moreover, emphasis is given to the question of how BVOCs will help forests adapt 
to environmental stress, particularly biotic stress related to climate change. Trees use their vascular system and emissions 
of BVOCs in internal communication, but emitted BVOCs have extended the communication to tree population and whole 
community levels and beyond. Future forestry practices should consider the importance of BVOCs in attraction and repul-
sion of attacking bark beetles, but also take an advantage of herbivore-induced BVOCs to improve the efficiency of natural 
enemies of herbivores. BVOCs are extensively involved in ecosystem services provided by forests including the positive 
effects on human health. BVOCs have a key role in ozone formation but also in ozone quenching. Oxidation products form 
secondary organic aerosols that disperse sunlight deeper into the forest canopy, and affect cloud formation and ultimately 
the climate. We also discuss the technical side of reliable BVOC sampling of forest trees for future interdisciplinary stud-
ies that should bridge the gaps between the forest sciences, health sciences, chemical ecology, conservation biology, tree 
physiology and atmospheric science.
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Semiochemicals

Abbreviations
BVOC  Biogenic volatile organic compound(s)
DMNT  (E)-3,8-dimethyl-1,4,7-nonatriene
EFN  Extrafloral nectar
EM  Ecosystem management
ES  Ecosystem services
ET  Ethylene
GLV  Green leaf volatile(s)
HIPV  Herbivore-induced plant volatiles
ICOS  Integrated carbon observation system
JA  Jasmonic acid
LOX  Lipoxygenase pathway (oxylipin pathway)
MeJA  Methyl jasmonate
MVA  Mevalonate pathway
MEP  2-C-methyl-d-erythritol 4-phosphate pathway
MT  Monoterpene
NOx  Nitrogen oxides
Pn  Net photosynthesis
POA  Primary organic aerosols
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SA  Salicylic acid
SFM  Sustainable forest management
SOA  Secondary organic aerosols
SQT  Sesquiterpene
SHI  Shikimate pathway

Introduction

Forests occupy one-third of the Earth’s land area, and they 
are one of the major components of the global carbon cycle, 
providing substantial storage (~ 45%) of terrestrial carbon 
(Bonan 2008). Boreal conifer forests (Taiga) form the larg-
est terrestrial biome on Earth, covering about one-third 
(15 × 108 ha) (33%) of the total global forested area (Tag-
gart and Cross 2009). Forests are important sinks of atmos-
pheric  CO2, representing approximately half of terrestrial 
net primary production, and at the global scale, larger and 
older forest trees have a higher carbon accumulation rate 
than younger trees (Stephenson et al. 2014). In Europe, long-
term forest management has reduced the carbon storage not 
only in living biomass, but also in the coarse woody debris, 
litter, and soil in managed forests compared with unman-
aged forests (Naudts et al. 2016). Globally, deforestation of 
old wooded areas for agriculture and urbanisation has sub-
stantially reduced carbon sequestration and promoted the 

enrichment of  CO2 in the atmosphere (Unger 2014; Alkama 
and Cescatti 2016).

In addition to  CO2 fixation, forests affect global climate 
by adding atmospheric humidity through evapotranspiration 
(Bonan 2008) and by emissions of biogenic volatile organic 
compounds (BVOCs) (Fig. 1). It has been estimated that 
terrestrial plants re-emit approximately 1–2% of net primary 
production to the atmosphere as isoprene and monoterpenes 
(MTs) (Harrison et al. 2013). In some tree species, the pro-
portion of carbon re-emitted as BVOCs can be as high as 
8–13% under optimal light and temperature conditions (Kes-
selmeier et al. 2002; Peñuelas and Staudt 2010). C loss as 
emitted BVOCs is higher in young (7%) than in older (1.6%) 
leaves (Ghirardo et al. 2011). However, at the global level 
the BVOC emission estimates are still highly uncertain and 
vary significantly. The most commonly used global BVOC 
model MEGAN 2.1 (Guenther et al. 2012) estimates that iso-
prene comprises about half of the total global BVOC emis-
sion of 1 Pg  (1015 g), and the rest are other reactive terpenes 
and other VOCs such as methanol, aldehydes and methyl 
propanoids. Tropical trees are estimated to be responsible for 
about 70% and boreal and temperate trees together responsi-
ble for 10% of the global annual BVOC emissions (Guenther 
et al. 2012). Another global emission model, ORCHIDEE 
(Messina et al. 2016), estimated that the share of the global 
annual BVOC emissions from boreal and temperate forest is 

Fig. 1  The bottom-up approach of basic physiological and ecological 
processes related to forest BVOC emissions. At different levels, dif-
ferent types of measurements can be taken from leaf level cuvettes 

to eddy covariance methods at forest stand and landscape levels and 
satellite remote sensing at the biosphere scale
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higher suggesting that MT and sesquiterpene (SQT) emis-
sions from northern regions are particularly underestimated 
by MEGAN. However, MTs and SQTs are the most reactive 
BVOCs emitted by the dominating European forest trees 
(Oderbolz et al. 2013). They readily react with atmospheric 
oxidants such as ozone, OH and  NO3 radicals, which leads 
to further reactions that form low-volatility vapours (Fried-
man and Farmer 2018) and SOA (Virtanen et al. 2010) in the 
forest atmosphere. Biogenic SOA is capable of screening out 
excess solar radiation and participating in cloud formation 
(Ehn et al. 2014).

In this review, our focus is on ecological functions and 
the ecosystem–atmosphere interface of the BVOCs produced 
by forest trees and other biological sources in forest ecosys-
tems, but also on the ecosystem services (ES) they provide. 
Climate relevant fluxes of  CO2, methane and volatile plant 
hormones such as ethylene are mostly excluded from this 
review. Thus, our definition of BVOCs can also be termed 
biogenic non-methane BVOCs (Kesselmeier and Staudt 
1999). We cover whole functional dynamics of BVOCs 
on ecosystem level from different species interactions in 
which they participate in forest ecosystems and end with 
the atmospheric degradation of the compounds and poten-
tial functions of their reaction products. We do not cover 
the various interactions between photosynthesis (Pn) and 
BVOC synthesis/emissions, because these have been exten-
sively reviewed recently (e.g. Loreto and Schnitzler 2010; 
Peñuelas and Staudt 2010; Harrison et al. 2013; Fini et al. 
2017; Sharkey and Monson 2017). As temperate deciduous 
forests and boreal conifer forests are the dominating forest 
biomes in Europe (Naudts et al. 2016), our examples are pre-
dominantly from these environments. It should be noted that 
forest ecosystems can also be a sink of BVOCs (Niinemets 
et al. 2014) and anthropogenic VOCs (Custodio et al. 2010) 
and ultra-fine aerosol particles produced from VOCs and 
drifted from other natural (Holopainen et al. 2017; de Sa 
et al. 2018) or urban environments (de Sa et al. 2018). On 
the other hand, photochemical oxidation of anthropogenic 
VOCs can be even faster in forest ecosystems than in urban 
environments (Custodio et al. 2010).

Chemical diversity of BVOCs and their 
production in plants

BVOCs can be defined as low molecular weight and mostly 
lipophilic molecules that have high vapour pressure at ambi-
ent temperature (Adebesin et al. 2017). Based on their physi-
cal properties, BVOCs can be classified as extremely low, 
low, semi-, intermediate or highly volatile compounds (Fin-
layson-Pitts 2017). BVOCs represent volatile products from 
various biochemical pathways (Maffei 2010; Dudareva et al 
2013). In addition to plants, the same biochemical pathways 

and their volatile end products can be found in forest organ-
isms such as mycorrhiza-forming fungi (Ditengou et al. 
2015) and bark beetles (Martin et al. 2003; Gilg et al. 2005).

The major chemical groups of BVOCs emitted by plants 
(Fig. 2) can be summarised as isoprenoids from two terpene 
synthesis pathways (the mevalonate pathway (MVA) in the 
cytosol and the 2-C-methyl-d-erythritol 4-phosphate (MEP) 
pathway) in the plastids, green leaf volatiles (GLVs) from 
the oxylipin/LOX pathway and aromatic compounds (benze-
noids and phenylpropanoids) from the shikimate (SHI) path-
way (Maffei 2010; Dudareva et al. 2013). In addition, glu-
cosinolates are a small, but ecologically important group of 
sulphur-containing compounds in plants of the order Bras-
sicales (Hopkins et al. 2009). Several other highly volatile 
compounds related to tree physiology, such as acetaldehyde, 
acetone, acetic acid, formic acid and alcohols ethanol and 
methanol (Table 1), can also be observed in above forest flux 
studies (Rantala et al. 2015).

Isoprenoids or terpenoids are constructed from five car-
bon  (C5) isoprene units (terpenes) or their derivatives (ter-
penoids) (e.g. Wilbon et al. 2013). Terpenes with low carbon 
content such as isoprene  (C5) or MTs  (C10) are volatile or 
semi-volatile while compounds with a higher number of car-
bon atoms such as SQTs  (C15) are of semi- or low volatility 
(Mofikoya et al. 2019).

Isoprene or MTs dominate the BVOC emissions of many 
plant species, and they are globally the most important plant 
volatiles (Laothawornkitkul et al. 2009). Isoprene emitters 
are typical in temperate and tropical forests, and MT emitters 

Fig. 2  Schematic overview of four major secondary metabolite path-
ways responsible for BVOC production in plants as suggested by 
Dudareva et  al. (2013). SHI shikimate pathway; MEV mevalonate 
pathway and MEP methylerythritol phosphate. DMADP dimethylallyl 
diphosphate (C5), GDP geranyl diphosphate (C10, acyclic MT) and 
NDP neryl diphosphate (C10, cyclic MT), FDP farnesyl diphosphate 
(C15)
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are typical in coniferous forests (Unger 2014). Methylbute-
nol (2-methyl-3-buten-2-ol, MBO) is a  C5 alcohol mostly 
emitted by young shoots of pine species, which are known 
to emit only negligible amounts of isoprene (Aalto et al. 
2014). Structurally and bio-synthetically, MBO is related to 
isoprene (Gray et al. 2003), and its atmospheric behaviour 
is similar to isoprene.

GLVs form a distinctive smell of damaged green plant 
tissues. Chemically, they are  C6-aldehydes,  C6-alcohols 
and their acetates (Arimura et al. 2017). Emission of these 
compounds occurs almost instantly after a stress event that 
causes damage to cellular membranes of plants (Ameye 
et al. 2018). GLV emissions show a successional trend of 
compounds with the emission profile changing within a few 

minutes of the damage event (Brilli et al. 2011; Maja et al. 
2014; Šimpraga et al. 2016).

Volatile aromatic compounds are comprised of benze-
noids and phenylpropanoids formed via the shikimate path-
way, which is primarily devoted to the synthesis of aromatic 
amino acids (Misztal et al. 2015; Arimura et al. 2017). Com-
mon benzenoids, benzene, xylene and toluene are released 
to the atmosphere from oil and gasoline used for fuels, but 
these same compounds are emitted from the foliage, bark 
and xylem of trees (Misztal et al. 2015; Tiiva et al. 2018). 
Other common volatile benzenoids released from foliage 
and flowers of plants are methyl salicylate (MeSA), methyl 
chavicol, indole and p-cymene (Maffei 2010; Misztal et al. 
2015). Typical volatile phenylpropenes are e.g. eugenol, 

Table 1  Major BVOCs emitted 
by plants and their synthesis 
sites in plant cells

Compound/group Chemical 
formula

Molecular structure Site of synthesis

Isoprene C5H8 plas�ds

Monoterpenes
- α-pinene 

- Linalool 
(oxygenated)

C10H16

C10H18O 

plas�ds

Homoterpenes

- (E)-4,8-dimethyl-
1,3,7-nonatriene 
(DMNT)

C11H18

plas�ds and 
cytosol

Sesquiterpenes

- β-caryophyllene C15H24

cytosol

GLVs, LOX-products, e.g.:
- (Z)-3-hexenal 
- (Z)-3-hexenol 
- (Z)-3-hexenyl acetate

C6H10O 
C6H12O 
C8H14O2

plasmamembranes

Phenylpropanoids and 
benzenoids 
- Methyl benzoate

- Methyl salicylate

- Isoeugenol

C8H8O2

C8H8O3 

C10H12O2

cytosol

Short-chained BVOC:
Methanol 

CH3OH cell wall
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isoeugenol, methyleugenol, isomethyleugenol, chavicol and 
methylchavicol (Dudareva et al. 2013).

Biosynthesis of BVOCs takes place either in photosyn-
thetic cells (Fini et al. 2017) or in non-photosynthetic, spe-
cialised epidermal cells e.g. in flower petals (Adebesin et al. 
2017) and in glandular trichomes (GTs; Fig. 3d) (Tissier 
et al. 2017; Zager and Lange 2018) or in epithelial cells 
of conifer resin ducts (Fig. 3a–c) in the xylem, cambium, 
phloem or needles (Zulak and Bohlmann 2010; Degenhardt 
et al. 2009).

Evergreens including Scots pine (Pinus sylvestris), 
Norway spruce (Picea abies), deciduous beech (Fagus 
sylvatica) and birch (Betula spp.) species are MT emitters 
and cover 75% of the total forest area in Europe (Table 2, 
Karl et  al. 2009). Norway spruce also emits isoprene, 
although MT emissions are dominant. The predominantly 
isoprene-emitting deciduous species Quercus robur and 
Q. petraea form approximately 5% of European forested 
area. Other isoprene emitters in boreal/alpine and tem-
perate environments are Populus and Salix species, while 
isoprene emitters are more common in warmer climates 
(Sharkey et al. 2008). All plant organs from flowers to 

roots can produce and emit BVOCs (Rasmann et al. 2005; 
Schiestl 2017), but photosynthetic leaves and needles of 
trees are the most important plant organs when consider-
ing the sources of BVOC emission in the forest atmosphere 
(Karl et al. 2009). In Populus sp. branches, a young devel-
oping leaf reaches maximum isoprene emission capacity 
and maximal leaf size at the age of 10–14 days (Sharkey 
et al. 2008). Coniferous trees are known for their terpene-
rich oleoresin composed of non-volatile diterpenes and 
volatile MTs and SQTs (Sallas et al. 2003; Eller et al. 
2013). Conifer oleoresin is stored in resin ducts in the 
needles, but also in the inner bark (phloem) and the wood 
(xylem), and from these storage structures, a proportion of 
the BVOCs is emitted through the bark to the atmosphere 
(Vanhatalo et al. 2015). Stem MT emission bursts through 
the bark may occasionally reach 50 ng m−2  s−1 in spring 
although they normally stay below 10 ng m−2  s−1 in P. 
sylvestris (Vanhatalo et al. 2015). Ghimire et al (2016) 
reported bark MT emissions from intact P. abies to be 
3 ng m−2  s−1. When compared to average MT emissions 
from mature pine needles of 0.34 ng m−2  s−1 (Ruuskanen 
et al. 2005), it can be concluded that bark emissions may 

Fig. 3  BVOC storage structures on needles and leaves of forest trees. 
a Light microscopy of a section of a Pinus sylvestris needle showing 
seven resin canals (RC) in the outer mesophyll. Resin canals of P. syl-
vestris are continuous. b Close-up of one of the resin canals showing 
the resin excreting epithelial cells (Ep) in the inner surface of resin 

canal. c Section of a Picea abies needle having two resin canals in the 
opposite sides of the needle. Resin canals of P. abies are discontinu-
ous. d SEM micrograph of Betula pubescens spp. czerepanovii show-
ing a peltate-type glandular trichome on leaf vein
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contribute substantially to the whole tree BVOC emissions 
from conifers.

Plant roots can be important sources of BVOC emissions 
in forest ecosystems, but their measurement and quantifica-
tion are difficult as root systems cannot be separated from 
the soil microbial network of mycorrhizal fungi and other 
rhizosphere microbes that also emit BVOCs (Peñuelas et al. 
2014; Ditengou et al. 2015). The studies of tree rhizosphere 
emissions show that terpene storing species like conifers 
may have significant terpene emissions directly from the 
rhizosphere area (Lin et al. 2007; Rasheed et al. 2017) and 
the BVOC composition reflects the emissions from shoots 
(Ghimire et al. 2013; Tiiva et al. 2019). Deciduous trees 
and herbaceous plants also have BVOC emissions from the 
rhizosphere area (Steeghs et al. 2004; Maja et al. 2015). By 

analysing the root volatiles of plants, it might be possible 
to resolve many crosstalk processes underground that are at 
this point unknown.

The blend of volatile MTs is genotype dependent e.g. in 
deciduous Betula pendula (Maja et al. 2014) and evergreen 
Quercus suber (Loreto et al. 2009), P. sylvestris (Bäck et al. 
2012) and Pseudotsuga menziesii (Joó et al. 2011). Of the 
major volatiles emitted by conifer trees, MTs are the most 
variable (Iason et al. 2011). For instance, the MT composi-
tion of a P. sylvestris stand includes in addition to shoot 
emissions (Bäck et al. 2012), residue wood (Kivimäenpää 
et al. 2012; Haapanala et al. 2012) and litter (Kivimäen-
pää et al. 2018) emissions, which can represent α-pinene or 
Δ-3-carene dominating genotypes with an up to 80% domi-
nance of either of these compounds. This strong genotype 

Table 2  BVOC emission 
potential of leaves and needles 
of selected major European 
forest tree species including tree 
coverage of each trees species

Data are modified from the data presented by Karl et al. (2009)
MT monoterpene, SQT sesquiterpene emission potential. MT were separated to directly synthesising pool 
and storage pool (such as glandular hair and resin canal) leaf emissions according to Karl et al. (2009)
a Conifer species
b Ghirardo et al. (2010)

Species Isoprene MT SQT Stored MTs % of European 
forested area

Evergreens
 Pinus sylvestrisa 0.1 5.0 0.1 Yes 31.15
 Picea abiesa 1.0 2.5 0.1 Yes 21.36
 Pinus pinastera 0.0 2.0 0.1 Yes 2.53
 Quercus ilex 0.0 43.0 0.1 No 2.18
 Pinus nigraa 0.0 6.0 0.1 Yes 1.74
 Abies albaa 1.0 1.5 0.1 Yes 1.50

Deciduous species
 Fagus sylvatica 0.0 21.1 0.1 No 7.11
 Betula pubescens 0.0 3.0 0.2 Yes 4.66
 Quercus robur 70.0 1.0 0.1 Yes 2.93
 Betula pendula 0.0 3.0 0.2 Nob 2.32
 Quercus petraea 45.0 0.3 0.1 Yes 2.31
 Castanea sativa 0.0 10.0 0.1 No 1.08
 Carpinus betulus 0.0 0.1 0.1 Yes 0.97
 Larix deciduaa 0.0 5.0 0.1 Yes 0.81
 Populus tremula 60 0.0 0.1 No 0.60
 Fraxinus excelsior 0.0 0.0 0.1 No 0.60
 Alnus glutinosa 0.0 1.5 0.1 No 0.35
 Acer platanoides 0.1 1.5 0.1 No 0.34
 Tilia cordata 0.0 0.0 0.1 No 0.21
 Alnus incana 0.0 1.5 0.1 No 0.19
 Populus hybrids 70 0.0 0.1 No 0.18
 Sorbus aucuparia 0.0 0.0 0.1 No 0.05
 Salix caprea 18.9 0.0 0.1 No 0.04

Exotic species
 Eucalyptus sp. 50.0 5.4 0.1 Yes 0.85
 Robinia pseudoacacia 12.0 0.1 0.1 Yes 0.46
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dependence of MT emissions is supported by extracted resin 
storage samples from needles and wood (Manninen et al. 
2002).

BVOCs in the interactions of forest 
organisms

The abiotic environment controls plant physiology and the 
emission of BVOCs from forest plants. Changes in abiotic 
factors also affect physiology of other forest organisms such 
as herbivores and their activity, feeding behaviour and dis-
tribution (e.g. Robinson et al. 2012; Faelt-Nardmann et al. 
2018) and their capacity to induce biotic stress on plants 
(Holopainen and Gershenzon 2010). Plant BVOC emissions 
are directly controlled by several abiotic factors including 
light level and UV radiation, water availability, carbon diox-
ide  (CO2) concentration and phytotoxic tropospheric ozone 
 (O3) (Peñuelas and Staudt 2010). Warming has most con-
sistently resulted in increased MT and SQT emission from 
plants, while severe drought and elevated  CO2 have resulted 
in reduced BVOC emissions (Holopainen et al. 2018).

Biotic stress effects on BVOC emissions of forest 
trees

Biotic stress is caused by herbivores, parasitic plants and 
microbial plant pathogens. Constitutively emitted BVOCs 
of plants provide important foraging cues to herbivorous 
animals and especially for specialist herbivore species, 
which use volatile cues to locate their specific host plant 
species among other plants (Finnerty et al. 2017). Herbivore-
induced plant volatiles (HIPV) are mostly BVOCs synthe-
sised in plants after feeding damage by a herbivore, although 
some of the constitutively emitted BVOCs are emitted at 
higher rates and they are an important part of the herbivore-
induced volatile blend (Holopainen and Gershenzon 2010; 
Aartsma et al. 2017).

Induction by herbivores

Within HIPV, there are two major classes: (1) GLVs, emitted 
immediately after wounding (seconds–minutes) and specifi-
cally linked to mechanical damage of cell membranes; and 
(2) compounds that are emitted a few to several hours after 
infection (MTs, SQTs, homoterpenes, MeSA and methyl 
jasmonate (MeJA)), indicating induction of specific genes. 
HIPV emissions from plant foliage are caused by the break-
down of cell membranes under feeding damage and the 
enzymes secreted by chewing and sucking insects (Ponzio 
et al. 2013). The main difference between these feeding 
modes is that feeding by a chewing insect induces jasmonic 
acid (JA) and ethylene (ET) signalling pathways (Ponzio 

et al. 2013; Papazian et al. 2016) and BVOCs regulated by 
these pathways, while sucking insects like aphids induce the 
salicylic acid (SA) signalling pathway (Ponzio et al. 2013) 
and emission of related BVOCs such as MeSA (Kasal-Slavik 
et al. 2017; Blande et al. 2010b). In general, it has been 
found that the SA-induced BVOC blend has a lower number 
of compounds than the JA-induced BVOC blend and SA 
signalling can downregulate some JA-induced BVOC emis-
sions (Wei et al. 2014).

GLV emission from leaves follows feeding activity of 
chewing herbivores (Maja et al. 2014; Šimpraga et al. 2016) 
and may stay at a high level when several larvae feed on 
foliage (Yli-Pirilä et al. 2016). Emission responses of terpe-
noids (MTs and SQTs) from the foliage of Betula spp. had 
a 3-h delay, before they substantially increasing in response 
to feeding by Geometrid Epirrita autumnata larvae, but 
MT emissions started to decline earlier than SQT emissions 
(Yli-Pirilä et al. 2016). Emissions of MeSA are indicative of 
phloem sap-sucking aphids on both deciduous (Blande et al. 
2010a) and evergreen (Pezet et al. 2013) trees. MeSA emis-
sion may be related to specific salicylate-inducing proteins 
found in saliva of aphids, but not in saliva of chewing insects 
(Cui et al. 2019). MeSA has been shown to have oviposi-
tion repellent properties against chewing herbivorous insects 
(Groux et al. 2014), which may reduce competing herbivores 
on aphid-infested plants.

Herbivore infestation influences Pn, with trends for 
decreases in Pn in both herbaceous (Papazian et al. 2016) 
and woody (Brilli et al. 2009) species. In herbivore-dam-
aged Populus, constitutive isoprene emission may become 
reduced faster than Pn (Brilli et al. 2009). Reduction of Pn 
and isoprene emission may relate to concurrent induced MT 
and SQT (Blande et al. 2007) or MT and GLV (Copolovici 
et al. 2017) emission rates.

BVOC blends induced by herbivores contain typi-
cal HIPV compounds in addition to substantial increases 
in compounds that form the basic constitutive emissions 
(Niinemets et al. 2013;) such as light- and temperature-
dependent isoprene or MTs and SQTs (Fig. 4a, b). A specific 
type of induced emissions is the release of BVOCs from 
storage structures e.g. from resin canals (Heijari et al. 2011) 
or glandular trichomes (Murungi et al. 2016) after damage of 
these structures. After bark damage by phloem chewing wee-
vils on the stem base of Pinus (Heijari et al. 2011) or Picea 
(Miller et al. 2005) seedlings induced linalool emission at 
shoot tops, indicating systemic de novo production of MTs 
(Miller et al. 2005). No evidence of increased expression 
levels of the terpene synthase-encoding genes was detected 
at feeding damage site of bark (Kovalchuk et al. 2015), 
although MT emissions from the damaged bark increased 
substantially (Erbilgin et al. 2003; Heijari et al. 2011; Koval-
chuk et al. 2015). This indicates immediate wound sealing 
by transportation of BVOCs mixed in resin to the feeding 
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site via resin flow from the storage sites elsewhere in the 
resin canals (Miller et al. 2005; DeRose et al. 2017).

Induction by pathogens

Infection or inoculation by plant pathogens (fungi, bacteria 
or viruses) may increase (Vuorinen et al. 2007; Eberl et al. 
2018) or suppress (McCartney et al. 2018) BVOC emissions 
when compared with healthy control plants or suppress her-
bivore-induced emission (Eberl et al. 2018). BVOC blends 
of pathogen infected plants have similar compounds to her-
bivore-induced blends, and BVOC composition is defined by 
the type of pathogen (Ponzio et al. 2013). Obligate patho-
gens are biotrophs that grow on living plant tissue, and they 
do not kill cells rapidly and in most cases no lytic enzymes 
are produced, while necrotrophs are non-obligate, kill cells 
rapidly with cell-wall-breaking enzymes and live on necrotic 
plant material (Kasal-Slavik et al. 2017). Biotrophs induce 
the SA pathway similarly to sucking herbivores and necro-
trophs induce the JA and ET pathways comparably to induc-
tion by chewing herbivores (Ponzio et al. 2013), although 
biotroph SA pathway/MeSA induction could be minor in 
the early stages of fungal infection (Vuorinen et al. 2007; 
Jiang et al. 2016; Kasal-Slavik et al. 2017). Furthermore, 
it has been found that BVOCs such as the MTs limonene 
and linalool and MeSA can inhibit germination of fungal 
spores, but BVOCs from a pathogen resistant cultivar may 
also induce resistance in otherwise susceptible plant culti-
vars (Quintana-Rodriguez et al. 2015). Interestingly, hyphae 
of plant pathogenic fungi can emit similar compounds as the 
plant, including the MT linalool and several SQTs (Müller 
et al. 2013). A decrease in isoprene emission is a typical 

response to infection by rust fungi in isoprene-emitting trees 
(Jiang et al. 2016), but so far, our knowledge is too limited 
to use pathogen-induced BVOC profiles for diagnostic pur-
poses in forest trees.

Evidence of BVOC induction in roots of woody plants by 
pathogenic fungi is rather limited. However, similar signal-
ling pathways have been found to be activated as by leaf 
pathogens (De Coninck et al. 2015). The sedge Carex are-
naria infected with pathogenic Fusarium sp. fungi is capa-
ble of changing root BVOC profiles to become attractive to 
antifungal bacteria (Schulz-Bohm et al. 2018). Beneficial 
fungi growing in forest soil emit BVOCs that may affect 
harmful and pathogenic microorganisms. For example, iso-
lates of a common forest saprobic fungus, Trametes versi-
color, suppress the growth of pathogenic Armillaria spp. 
and are capable of emitting nearly 200 different BVOCs 
(Szwajkowska-Michalek et al. 2018). An isolate emitting 
the highest concentration of 2-methylbutanal exhibited a 
greater capacity to inhibit the growth of Armillaria spp. 
(Szwajkowska-Michalek et al. 2018).

Induction by other plant parasites and symbionts

Infestation by the parasitic plant dodder (Cuscuta spp.) 
induced higher levels of SA across cultivars of evergreen 
cranberry (Vaccinium sp.), but did not affect host BVOC 
composition (Tjiurutue et al. 2016). Parasitic mistletoe (Vis-
cum spp.) plant on Pinus nigra did not acquire pine terpenes 
from the host plant, but the severity of attack was associated 
with increases of some MTs and significant reduction of 
SQTs and diterpenes in host needles (Lázaro-González et al. 
2018). Inoculation of pine stem with the pine wilt nematode 

Fig. 4  Herbivore-induced monoterpene (MT) and sesquiterpene 
(SQT) emission rates per unit of needle or leaf area (ng  cm−2  h−1) 
from coniferous and deciduous trees. a Pinus sylvestris. Control 
plants and European sawfly (Neodiprion sertifer) damaged seedling 

emission rates (Ghimire et  al. unpublished). b Control ramets and 
autumnal moth (Epirrita autumnata) damaged mountain birch (Bet-
ula pubescens ssp. czerepanovii) ramets (Mäntylä et al. 2008)
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Bursaphelenchus xylophilus did not change BVOC com-
position of Pinus spp., but wounding itself induced SQT 
and diterpene production (Rodrigues et al. 2017), while the 
α-pinene synthase gene in inoculated pine shoot cultures 
was upregulated in Pinus pinea, but not in Pinus pinastri 
(Trindade et al. 2016).

Endophytic fungi live in plant leaf tissues asymptomati-
cally, are mutualists and give protection against herbivores 
and pathogens. Young leaves of the deciduous trees are 
re-infected annually by endophyte spores (Helander et al. 
2006). An endophytic fungus Urnula sp. that infects fern 
trees can produce over 150 BVOCs including the SQT 
α-farnesene, when cultured on agar (Strobel et al. 2017). 
These volatiles inhibited growth of several pathogenic fungi 
including Botrytis cinerea, Ceratocystis ulmi, Pythium ulti-
mum, Fusarium solani. In future BVOC studies, it will be 
important to estimate how much of the tree foliage BVOC 
emissions are actually synthesised by endophytic fungi and 
how much by the host plant. In grasses, endophytes inhibited 
aphid population growth and in one grass species endophyte 
infection imposed stronger differences in BVOC profiles 
than herbivore damage (Li et al. 2014).

Talking trees and plant–plant communication

In the 1980s, ecologists became interested in the “talking 
trees” phenomenon (Baldwin and Schultz 1983) showing 
communication between trees (Haukioja et al. 1985). A 
chamber experiment (Baldwin and Schultz 1983) and field 
experiments (Rhoades 1983; Haukioja et al. 1985) demon-
strated that neighbours of defoliated tree saplings showed 
increased resistance against herbivores. It was considered 
that damaged trees were “talking” to their neighbours about 
the threat of herbivores (Baldwin and Schultz 1983). Herbi-
vore-induced BVOCs were found to attract natural enemies 
of herbivores in laboratory conditions, and leaves of neigh-
bouring healthy plants also became attractive (Takabayashi 
et al. 1991). The BVOCs induced by feeding of spider mites 
on lima bean induced the expression of at least five dif-
ferent defence genes in healthy lima bean (Arimura et al. 
2000) and induced secretion of extrafloral nectar (EFN) by 
healthy plants (Heil, 2008; Blande et al. 2010a). A meta-
analysis by Karban et al. (2014) indicated that 40 out of 48 
studies gave evidence of plant–plant communication with 
herbivore-induced BVOCs and improved herbivore resist-
ance in signal-receiving plants, but only six woody plant 
species were studied.

Trees are modular organisms, and not all parts have vas-
cular connection to each other. Frost et al. (2007) showed 
that BVOCs can act as external signals in within-plant com-
munication (intraspecific signals) that potentially carry 
information to distant parts of the plant and aid herbivore 
defence. A follow-up study (Frost et al. 2008) showed that 

one of the GLV compounds induced after mechanical and 
feeding damage, cis-3-hexenyl acetate, can prime tran-
scripts of genes that mediate oxylipin signalling and prime 
the release of terpene volatiles. Therefore, it is possible that 
plants in plant–plant communication just “eavesdrop” on 
these signals that are aimed for internal communication but 
result in similar responses in neighbouring plants of the 
same species (intraspecific signals) (Marković et al. 2019), 
or other species (interspecific signals) (Frost et al. 2008). 
Furthermore, BVOCs are not the only medium for plants 
to signal between each other. The ratio of red and far-red 
light (R/FR) is different in light reflected from photosyn-
thesising plant leaves, when compared to direct sun light. 
Plants sense neighbouring plants with the help of this ratio 
in reflected light using a phytochrome photoreceptor, and 
they can modify their growth shape before the actual shading 
effect by neighbours (Ballaré and Pierik 2017). Emissions 
of the volatile plant hormone ethylene are largely increased 
under low R/FR light, and in shaded conditions, this may 
also lead to downregulation of herbivore-induced terpene 
synthesis and emissions (Ballaré and Pierik 2017).

Sensing of BVOC signals

The enormous diversity of plant volatiles and their com-
bination in BVOC plumes emitted by plants (Junker et al. 
2018) provide a challenge for individual insects to find the 
cues of their specific host plant (Kessler and Kalske 2018). 
This is partly solved in the insect olfactory system which 
employs strategies of combinatorial coding to process gen-
eral odours as well as labelled lines for specific compounds 
from their host that need an immediate response (Haverkamp 
et al. 2018). The capacity to sense the BVOC signals from 
their specific host plant is important for forest herbivores 
such as bark beetles (Progar et al 2014) and their enemies 
(Peng et al. 2017). The perception of BVOCs by an insect 
antenna takes place on odour-perceiving sensilla hairs. A 
BVOC molecule enters the sensilla through cuticular pores. 
In the sensilla, lymph odour-binding proteins transport the 
BVOC molecule to the chemosensory receptor proteins on 
the dendrite of the olfactory receptor neuron, which trans-
mits information further to the brains (Peng et al. 2017). 
There are two types of olfactory sensory receptors; a broadly 
tuned receptor detects several dozen different compounds, 
and highly selective receptors are tuned to odours of out-
standing ecological relevance (Haverkamp et al. 2018). In 
the atmosphere, elevated  O3 may rapidly reduce BVOC sig-
nals (Blande et al. 2014; Farre-Armengol et al. 2016) while 
at elevated  CO2 herbivores may become more sensitive to 
plant BVOCs improving their orientation and performance 
(Dai et al. 2018). Plants reduce their isoprene emissions in 
response to elevated  CO2 (Peñuelas and Staudt 2010), which 
suggests that isoprene may less disturb the attraction of some 
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specialist parasitic wasps towards herbivore-induced BVOCs 
(Loivamäki et al. 2008).

It is well known that BVOCs play roles in volatile 
plant–plant signalling and plants can take advantage of these 
signals in intelligent ways (Trewavas 2017). However, the 
mechanisms of how signal-receiving plants are sensing these 
signals are not known. Trewavas (2017) suggested that since 
plants synthesise many BVOCs, they do have enzymes to 
produce the chemical, so they have the potential with slight 
modification of producing a similar protein for sensing 
them. For perception of BVOC molecules on receiver plant 
leaf surfaces, Arimura and Pearse (2017) proposed that the 
mechanism might involve similar perception of BVOC mol-
ecules on receiver plant leaf surfaces as proposed for active 
transport of BVOCs in emissions (Widhalm et al. 2015). 
The perception may include specific odour-binding transport 
proteins (specific type of lipid transfer proteins) to transport 
BVOC molecules to the potential receptor proteins in plant 
cells. Plants primed with a BVOC stimulus from damaged 
plants show faster and stronger defence responses after her-
bivore attack than non-primed plants, and this leads to lower 
performance of herbivores (Blande et al. 2010a, b; Douma 
et al. 2017). The energetic costs of priming are relatively low 
(Douma et al. 2017) compared to active induced defences 
which include substantial carbon allocation to chemical and 
structural defences (Stenberg et al. 2015).

BVOCs of rhizosphere, litter and understory

Forest structure can be divided into three different layers: 
the forest floor, the understory and the canopy, and all of 
these act as sources of BVOCs. In forest stands, the canopy 
layer of living trees has a substantial volume and leaf area 
and it acts as the most important emission source for BVOCs 
(Zhou et al. 2017), but can also act as a sink when atmos-
pheric BVOCs such as MTs are taken up through stomata 
(Niinemets et al. 2014) or when reaction products of rap-
idly reactive BVOCs such as SQTs are deposited on foli-
age (Zhou et al. 2017). In addition to green foliage, wood, 
phloem and bark of trunk and branches of living trees act 
as important pools of stored BVOCs such as oleoresin MTs 
in conifer forests (Taipale et al. 2011; Ghimire et al. 2016). 
Furthermore, some plant species such as woody shrubs 
(Himanen et al. 2010; Mofikoya et al. 2018) growing in the 
understory can act as significant emission sources. On the 
forest floor, important BVOC emission sources include leaf, 
needle and wood litter (Holopainen et al. 2010; Mäki et al. 
2017; Kivimäenpää et al. 2018) and the root systems of liv-
ing (Lin et al. 2007; Rasheed et al. 2017) and dead trees 
(Haapanala et al. 2012; Kivimäenpää et al. 2012). BVOC 
synthesis and emissions by soil microbes in temperate and 

boreal forests still need similar assessment as in tropical for-
ests (Bourtsoukidis et al. 2018).

Plant roots secrete or emit a vast array of compounds 
into the rhizosphere including non-volatile exudates, such 
as organic acids, but also BVOCs (Steeghs et al. 2004; Lin 
et al. 2007; Rasheed et al. 2017; Tiiva et al. 2019). Root 
MTs may have inhibiting effect on the activity of methano-
trophic bacteria (Maurer et al. 2008) or other soil microbes 
(Adamczyk et al. 2015); in contrast, they may also become 
mineralised by microbiota (Maurer et al. 2008). MTs emit-
ted within the soil profile, either by roots or by decaying 
biomass, may enhance the biodegradation of various organic 
pollutants (Rhodes et al., 2007). Lin et al. (2007) measured 
root content of volatile isoprenoids (specifically MTs) of 
Pinus sp. in field conditions and MT diffusion in the soil. 
They found significantly decreasing emission rates of MTs 
with increasing distance from the mature tree trunks. MTs 
can have relatively high concentrations in conifer root tissues 
while emissions are rather low (Lin et al. 2007). Reason for 
this could be that MTs are reactive, rapidly degrade in the air 
(Faiola et al. 2018), adsorb on various surfaces (Schaub et al. 
2010) or diffuse in soil water (Hiltpold and Turlings 2008). 
Therefore, a considerable proportion of volatile isoprenoids 
existing in the rhizosphere may not diffuse from the soil to 
the atmosphere (Lin et al. 2007).

MTs and SQTs released from insect-damaged roots attract 
entomopathogenic nematodes in the rhizosphere (Rasmann 
et al. 2005), and the diffusion of these BVOCs takes place 
through the gaseous rather than the aqueous phase of soil 
pores, as they diffuse faster and further at low moisture level 
(Hiltpold and Turlings, 2008). So far, the role of phytogenic 
VOCs in defence of forest tree roots against biotic stressors 
is not well known. Root-associated microbes are involved 
actively in function of roots (De Coninck et al. 2015), and 
they are capable of emitting BVOCs. Fungal symbionts use 
their BVOCs to induce mycorrhiza formation (Ditengou 
et al. 2015), and rhizobacteria of several bacterial genera 
use their BVOCs to protect roots against fungal pathogens 
(Mendez-Bravo et al. 2018). Ectomycorrhiza formation may 
activate jasmonic acid signalling, alter BVOC profiles and 
reduce herbivory in foliage of Populus × canescens (Kaling 
et al. 2018). MTs released from tree leaf litter may also have 
important allelopathic effects in soil e.g. by inhibiting ger-
mination and growth of competing herbaceous understory 
species (Silva et al. 2017).

Recent progress in studying soil microbes in tropical 
forests (Bourtsoukidis et al. 2018) suggests that they can 
have a more important role in soil BVOC, especially SQT 
emissions, than in temperate and boreal soil. Bourtsouk-
idis et al. (2018) showed that the highest emission rates are 
from the upper 0–5 cm of the organic soil layer and that 
these emissions were linked to bacterial and fungal activity 
by measurement of rRNA transcript abundances. Peñuelas 
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et al. (2014) reported that soil bacterial VOC profiles are rich 
in alkenes, alcohols, ketones and terpenes and that fungal 
VOCs are dominated by alcohols, benzenoids, aldehydes 
and ketones. Tiiva et al. (2019) suggested that the BVOC 
blend of the P. sylvestris rhizosphere, which is dominated 
by 1,3- and 1,4-dimethylbenzene (benzenoids), decanal 
(aldehyde) and phenol, more closely matches typical fun-
gal BVOC profiles than bacterial BVOC profiles or the pine 
BVOC composition supporting the results of Peñuelas et al. 
(2014). Analysis of BVOC emissions by boreal wild mush-
rooms (fungal basidiocarps) also supported these results as 
unsaturated C6–C10 alcohols and aldehydes (Aisala et al. 
2018) and ketones and alcohols (Zhang et al. 2018a) domi-
nated, although some MTs such as limonene (Aisala et al. 
2018) and linalool (Zhang et al. 2018a, b) were observed.

Nest mounds of Formica sp. wood ants can constitute 
significant aggregations of conifer needle litter and fungal 
hyphae, thus being potential BVOC sources. Analysis of 
BVOC emissions of nest mounds revealed that emissions are 
rich in MTs, particularly α-pinene, β-pinene and limonene 
with lower quantities of longifolene, myrcene, sabinene, 
camphor and camphene (Sorvari and Hartikainen, unpub-
lished). However, ant workers are important emitters of for-
mic acid, which is also a product of atmospheric MT–OH 
reactions (Friedman and Farmer 2018). Ants spray formic 
acid as a defence chemical when disturbed, and inside their 
nest, ant workers mix it with conifer resin to increase the 
antifungal effects of resin against entomopathogenic fungi 
(Brütsch et al. 2017). In addition to nest mound emissions, 
ants produce alarm pheromones and trail pheromones. 
Alarm pheromones are typically short chained compounds 
with one to 16 carbons that make those compounds highly 
volatile, such as 2-heptanone, 4-methyl-3-heptanone, cit-
ronellal, tridecane and undecane (Lenz et al. 2013). Trail 
pheromones are often aromatic amines (e.g. pyrazines), 
SQTs (e.g. farnesenes), carboxyl acids, aldehydes, acetate 
esters or ketones (Cerda et al. 2014).

Role of forests in BVOC‑based biosphere–
atmosphere feedbacks

BVOC reactions in the atmosphere

In principle, organic C released to the atmosphere as BVOCs 
is continually subject to reactions in the gas and particle 
phases throughout its atmospheric lifetime. Finally, the 
reaction products are lost as the deposition of organic par-
ticles on various surfaces (Blande et al. 2014; Holopainen 
et al. 2017) or become oxidised to small-molecular gases 
such as CO or  CO2 (Kroll and Seinfeld 2008). Friedman 
and Farmer (2018) summarised the role of MT BVOCs in 
atmospheric reactions in the following three processes: (1) 

BVOCs acting as parent hydrocarbons for the formation of 
SOA in reactions with ozone  (O3) (Joutsensaari et al. 2015; 
Zhao et al. 2017; Berndt et al. 2018), hydroxyl radical (OH) 
(Berndt et al. 2018; Friedman and Farmer 2018) or nitrate 
 (NO3) radical (Hellen et al. 2018), (2) BVOCs that react with 
hydroxyl (OH) radicals to form peroxy radicals  (RO2) (Zhao 
et al. 2015), which participate in photochemical tropospheric 
 O3 production (Berndt et al. 2018; Friedman and Farmer 
2018) and (3) BVOCs that react with  O3 at night to produce 
OH radicals (Lee et al. 2016).

Formation of phytotoxic ozone begins with the photo-
chemical oxidation of nitric oxide (NO) to nitrogen diox-
ide  (NO2) under sunlight in the atmosphere (Atkinson and 
Arey 2003) and is followed by reactions with anthropogenic 
VOCs and BVOCs (Pinto et al. 2010; Hellen et al. 2018). 
Formation of  O3 is often highest in downwind rural or for-
ested areas outside metropolitan areas, where NOx react 
with local BVOCs (Jeon et al. 2014). Reactions of newly 
formed  O3 with the BVOC molecules that have double bonds 
(Atkinson and Arey 2003) also lead to formation of reac-
tive OH radicals (Berndt et al. 2018; Friedman and Farmer 
2018). In addition to  O3, many BVOCs are very reactive 
with hydroxyl radicals (OH) or nitrate  (NO3) radicals lead-
ing to formation of SOA (Atkinson and Arey 2003). As OH 
radicals are the main sink of the greenhouse gas methane in 
the atmosphere, competing BVOCs prolong the lifetime of 
methane and enhance climate warming (Kaplan et al. 2006; 
Laothawornkitkul et al. 2009). On the contrary, biogenic 
SOA is capable of screening out excess solar radiation and 
participating in cloud formation (Ehn et al. 2014) mitigating 
climate warming. Extremely high variability in the atmos-
pheric reactivity of individual BVOCs may affect reactivity 
of the local BVOC blend. For example, the atmospheric life-
times of the SQTs β-caryophyllene and longifolene with  O3 
are 2 min and > 33 d, respectively (Atkinson and Arey 2003).

Secondary organic aerosols and their effects

Blue haze over forested areas (Went 1960) is one of the 
first observations indicating that organic volatiles released 
from trees in the air might be involved in several chemical 
reactions in the atmosphere including  O3 formation and the 
aerosol nucleation (Kulmala et al. 2013) or BVOC condensa-
tion over seed particles such as sulphur-rich particles (Tröstl 
et al. 2016). Recently, Kirkby et al. (2016) have shown that 
galactic cosmic radiation is enough to induce nucleation of 
pure BVOCs leading to formation of SOA. Therefore, higher 
BVOC emission from forests may promote radiative forc-
ing by cloud condensation nuclei (CCN) and cloud forma-
tion (Joutsensaari et al. 2015; Zhao et al. 2017) leading to 
screening of excess solar radiation for the vegetation even in 
pristine pollution-free environments. SOA absorbs light in 
the short visible and near-UV region radiation wavelengths 
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(Saleh et al. 2013) while primary organic aerosols (POA) 
and black carbon released e.g. from forest fires and biomass 
burning more efficiently absorb thermal radiation in the 
atmosphere and darken e.g. arctic snow and thus are associ-
ated with global warming (IPCC 2014).

Biosphere–atmosphere interactions are dynamic, interact-
ing through a series of feedback loops. Better understanding 
of these loops can improve forecasts of climate and vegeta-
tion resilience. Variability in terrestrial vegetation growth 
and phenology can modulate fluxes of water and energy to 
the atmosphere (Sheil 2018), thus affecting the climatic con-
ditions that regulate vegetation dynamics. The BVOCs from 
natural vegetation may significantly affect cloud formation 
(Joutsensaari et al. 2015; Zhao et al. 2017) and precipitation 
in different vegetation regions.

BVOCs and forest management

Timber felling effects on BVOC emissions

Thinning of young densely growing conifer forest is needed 
to reduce stand density and to support the further growth of 
trees. Mechanical damage during thinning activities leads 
to emissions of BVOCs, mostly resin-stored MTs from cut 
trees, their branch residues, stumps and finally the logs, if 
they are stored in the forests (Räisänen et al. 2008b). Com-
mercial thinning increased MT flux to the atmosphere by 
tenfold at 6 m above a stand of ponderosa pine (Pinus pon-
derosa L.) (Schade and Goldstein 2003). Approximately 
twofold–threefold increase in aerial MT concentrations after 
thinning and nearly fourfold increases after clear-cutting of 
P. sylvestris were found, when compared to MT emissions 
of an intact pine stand (Räisänen et al. 2008a, b).

Clear felling of forest leaves the tree stumps as residue 
wood, which still has a living root system. This may end up 
in a flow of resin from the root system to the stump surface 
for wound healing and substantial BVOC emissions from 
fresh and drying resin. Kivimäenpää et al. (2012) reported 
MT emissions from the P. sylvestris stump cut-surface area 
to be 27–1582 mg m−2  h−1 when measured within 2–3 h 
after tree cutting and 2–79  mg  m−2  h−1 after 50  days. 
Haapanala et al. (2012) found in longer-term monitoring 
the average MT emissions from pine stump surfaces to be 
25 mg m−2  h−1. Kivimäenpää et al. (2012) estimated that 
the daily MT emission rates from fresh stumps of a clear-
felled P. sylvestris stand with a density of 2000 trees per 
ha could be 100–710 g ha−1  d−1 in a 40-year-old stand and 
137–970 g ha−1  d−1 in a 60-year-old stand. Haapanala et al. 
(2012) evaluated that BVOC emission from annually cut 
Scots pine forests (including stumps, branches and needle 
litter) in Finland would be in the order of 15 kilotonnes per 
year, which is approximately 10% of the estimated annual 

MT release (114 ktn) from intact P. sylvestris forests in Fin-
land (Tarvainen et al. 2007).

Applications in forest protection against pests 
and diseases

Studies with some key forest pest species have shown that 
BVOCs have an important role in controlling pest behav-
iour and as determinants of pest resistance of forest trees. 
Pine and spruce plantations in Europe are under continuous 
threat by large pine weevil (Hylobius abietis) adults, which 
feed on seedling bark phloem and cause death of seedlings. 
Adult weevils are controlled with insecticides in planta-
tions (Luoranen et al. 2017), but efforts have been made to 
develop pesticide-free control methods of H. abietis. These 
include traditional biological control of H. abietis larvae 
with entomopathogenic nematodes in larval feeding sites in 
rotten conifer stumps (Kapranas et al. 2017). In order to con-
trol adult weevils, breeding for resistance (Zas et al. 2017), 
release of repellent BVOCs from dispensers (Lundborg et al. 
2016b) and treatment with repellent plant extracts (Egigu 
et al. 2011) have been applied. Spraying of natural elicitors 
such as methyl jasmonate (MeJA), which controls resin acid 
and MT production, has reduced H. abietis damage intensity 
in seedlings (Heijari et al. 2005; Zas et al. 2014; Lundborg 
et al. 2016a, b). Timing of the elicitor treatments is crucial, 
because too early treatment in the spring may lead to seri-
ous growth disturbances of current-year shoot development 
(Heijari et al. 2005). Increased ratio of MTs β-pinene/α-
pinene in the phloem of elicitor-treated seedlings reduced 
H. abietis damage (Lundborg et al. 2016a). When additional 
MTs β-pinene, ∆-3-carene, bornyl acetate and 1,8-cineole 
were released from a dispenser in addition to natural pine 
odour, reduced catches of H. abietis were found (Lundborg 
et al. 2016b).

BVOCs such as the MT α-pinene released from conifer 
resin are important orientation cues for bark beetles to locate 
suitable host tree species. Females of the bark beetle Den-
droctonus ponderosae (mountain pine beetle) accumulate 
MT esters verbenyl oleate and verbenyl palmitate during 
their larval development and possibly use these compounds 
as precursors for verbenol, which they release as an aggrega-
tion pheromone to coordinate mass attack of individual trees 
(Chiu et al. 2018). Verbenone, another α-pinene derivative, 
is an anti-aggregation hormone emitted by females if popu-
lation density is too high. Thus, verbenone is a repellent 
of bark beetles (Rappaport et al. 2001; Ranger et al. 2013; 
Progar et al. 2014) and formulations of verbenone are com-
mercially available for use in the western USA (Progar et al. 
2014). However, under solar radiation this compound can be 
photoisomerised to chrysanthenone, a compound that acts 
as an attractant for females of xylem feeding cerambycid 
beetles (Zhang et al. 2015).
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Ascomycete fungi that live on conifer bark and might 
be mutualists of conifer bark beetles are known to produce 
BVOCs that have attractant and repellent effects (Kan-
dasamy et al. 2016). The BVOCs of these fungi have poten-
tial to act together with bark beetle pheromones to improve 
the efficiency of pheromone traps in bark beetle monitor-
ing. On the other hand, dispensers with these fungal BVOCs 
and oxygenated MTs might be used for repelling beetles 
from potentially attacking sensitive stands e.g. in wind fall 
areas (Kandasamy et al. 2016; Seybold et al. 2018). These 
examples show potential, but also some of the difficulties 
in using BVOCs in pest control in forest ecosystem. There 
needs to be better knowledge of how a specific BVOC and 
its enantiomers (chemical isomers) affect various target and 
non-target organisms and what are the synergistic effects 
together with other BVOCs (Lundborg et al. 2016b, Seybold 
et al. 2018).

Many BVOCs, particularly MTs in higher concentrations, 
are directly toxic to plant pathogenic fungal populations 
and may prevent germination of fungal spores in addition 
to their capacity to induce pathogen resistance in infested 
plants and provide associational resistance in neighbouring 
plants (Quintana-Rodriguez et al. 2015). In P. abies trees 
MeJA elicitor treatment increased the accumulation of terpe-
noid resin components and gave protection against infection 
by Ceratocystis polonica, a bark beetle-associated fungus 
(Zeneli et al. 2016). Chitosan, a polysaccharide elicitor made 
of fungal and crustacean chitin, has several modes of action 
including activation of several signalling pathways such as 
the octadecanoic pathway and thus affects GLV emissions 
and jasmonic acid content in plants (El Hadrami et al. 2010). 
In forest nurseries, chitosan treatment has given protection 
against pine pathogens (Aleksandrowicz-Trzcinska et al. 
2015) while in a 15-year-old Pinus taeda stand, chitosan 
treatment increased the oleoresin production of bark but did 
not suppress lesion growth of bluestain fungi or intensity of 
bark beetle attack (Klepzig and Strom 2011). Plant elicitors 
that activate plant chemical defence (Holopainen et al. 2009) 
may significantly reduce the use of insecticides in nurseries 
and forest plantations (Luoranen et al. 2017).

In modern forest management, pest-centric pest manage-
ment strategies are gradually being replaced by more holistic 
community-based strategies called sustainable forest man-
agement (SFM) or ecosystem management (EM) (Alfaro and 
Langor 2016). According to Alfaro and Langor (2016), the 
principles of SFM and EM strategies require consideration of 
the fact that all species contribute to ecosystem structure and 
function and buffering against pest outbreaks is often done 
in ways that are poorly understood and cannot be adequately 
measured. In agroecosystems, manipulation of the tritrophic 
effects (attraction of a pest insect’s natural enemies) with 
induced BVOCs is under development (Heil 2008; Stenberg 
et al. 2015), but highly diverse forest ecosystems are more 

challenging in this task. In forest ecosystems, BVOCs are 
important in chemical defence of trees, community level sig-
nalling, associational pest resistance and in abiotic and biotic 
stress control of forest trees and thus integrates the means of 
EM (Iason et al. 2018). In natural forest settings, herbivore-
induced BVOCs are known to attract insect-feeding birds, 
e.g. to a moth-damaged Betula spp. (Mäntylä et al. 2008). 
However, we do not yet know enough about how BVOCs 
affect parasitoids and predator insects in forest ecosystem 
or the intricacies of the process. For example, on P. sylves-
tris, a specialist egg parasitoid wasp of the pine sawfly did 
not innately show a positive response to oviposition-induced 
BVOCs, but instead wasps need to learn them (Mumm et al. 
2005). Furthermore, these egg parasitoids did not show any 
response to BVOCs induced by the larval feeding of the host 
sawfly species (Mumm et al. 2005). Therefore, better knowl-
edge of BVOC functions in forest ecosystems is essential for 
improved forest EM in future.

BVOC sampling in forest sites

In addition to remote sensing (Foster et al. 2014) and atmos-
pheric monitoring stations (Kulmala et al. 2013), direct 
BVOC sampling from trees e.g. in remote forest sites with 
pathogen or insect outbreaks, is necessary to understand the 
effects of stress on BVOC emissions. For estimates of BVOC 
emission rates per unit of plant leaf area or dry weight, reli-
able sampling enclosures (Ortega et al. 2008) and analysis 
methods (Materić et al. 2015; Niinemets et al. 2010) are 
needed. Flux measurements depend on dynamic sampling 
where BVOC mixing ratios in an air flow can be quantitated 
(Tholl et al. 2006; Ortega et al. 2008; Materić et al. 2015), 
whereas qualitative analyses, e.g. the BVOC composition of 
floral scent, can be conducted with a static system by enclos-
ing an adsorbent fibre and a flower in the same enclosure 
(Tholl et al. 2006). Simultaneous measurement of environ-
mental data (light, temperature, humidity) over the period 
of sample collection is needed for emission calculations and 
temperature standardisation (Ortega et al. 2008).

Enclosure materials should be transparent and inert to 
BVOCs (Tholl et al. 2006;), such as some leaf Pn cuvettes 
(Fig. 5a). enclosures made of glass (Fig. 5b) or PTFE (pol-
ytetrafluoroethylene, Teflon) film (Fig. 5c), or bags made of 
PTFE (Ortega et al. 2008) or pre-heated polyethylene tere-
phthalate (PET) (Stewart-Jones and Poppy 2006; Fig. 5d). 
If using leaf, branch or photosynthesis cuvettes made of 
acrylic, or another less inert material, they should be pref-
erably coated inside with PTFE film for BVOC sampling 
(Aalto et al. 2015; Fig. 5a). Air removed for sampling is 
replaced with clean air pumped through PTFE tubing with 
dust and activated charcoal filters and  MnO2 as an ozone 
scrubber (Joó et al. 2011; Ortega et al. 2008; Fig. 5d).
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Materić et al. (2015) list two main categories of BVOC 
sampling and analysis; (1) gas chromatography–mass spec-
trometry (GC–MS) for online or offline sampling and (2) fast 
online MS techniques with soft chemical ionisation, such 
as proton transfer reaction–mass spectrometry (PTR–MS). 
Online sampling needs heavy instrumentation at the sam-
pling site but allows continuous monitoring of emissions 
with high time resolution. Offline GC–MS sampling is based 
on suction of dynamic BVOC samples through adsorbent-
filled glass or steel tubes (Fig. 5d) and tight closing of tubes 
for storage and later desorption and GC–MS analysis in the 
laboratory (Tholl et al. 2006). The suggested porous adsor-
bent polymers for volatile and semi-volatile  C6–C30 com-
pounds are e.g. Tenax TA, while for highly volatile  C2–C12 
compounds Carbopack, Carbosieve and Carbotrap products 
are more effective (Tholl et al. 2006; Ho et al. 2018). A com-
bination of different sorbent types in sample tubes allows a 
better yield of both high- and less volatile molecules (Ho 

et al. 2018). Moreover, the choice of adsorbent mesh size, 
surface area and temperature limit must be adequately made. 
Sample loss via breakthrough is minimised with low flow 
rates such as 50 ml min−1 (Ho et al. 2018), but for optimisa-
tion of BVOC yield per unit of sampling time, flow rates of 
100–200 ml min−1 are often used (Joó et al. 2011; Maja et al. 
2015; Carriero et al. 2016).

Fast real-time PTR–MS (Materić et al. 2015; Šimpraga 
et al. 2011) and PTR–time of flight–MS technology (Kaser 
et al. 2013; Maja et al. 2014) have become prevalent tech-
niques in laboratories and forest atmosphere monitoring sta-
tions, where measuring towers allow microclimatic, BVOC 
and ecophysiological data collection from air and foliage at 
different heights of the tree canopy (Šimpraga et al. 2011, 
2013; Aalto et al. 2014, 2015). The advantages are high time 
resolution and high sensitivity for detection of rapid changes 
in BVOC emissions caused by plant growth (Brilli et al. 
2016) or mechanical (Brilli et al. 2011; Kaser et al. 2013), 

Fig. 5  BVOC sampling from tree leaves. a Outdoor leaf cuvette, b 
indoor cooled shoot cuvette for online PTR–MS sampling in the labo-
ratory, c outdoor branch cuvette for photosynthesis measurements and 
BVOC sampling in the field. Cuvette is made of Teflon film, and all 
inner parts are made of Teflon from inside and supportive steel out-

side. d A branch enclosure made of a PET cooking bag for sampling 
of BVOCs in remote forest sites. Temperature and relative humidity 
are monitored with small dataloggers inside and outside of the enclo-
sure
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fire-induced (Brilli et al. 2014) or herbivore-induced dam-
age (Schaub et al. 2010; Maja et al. 2014). A disadvantage 
of PTR–MS is that separation of molecules with the same 
molecular mass, such as various MT or SQT compounds, is 
not possible. This disadvantage is particularly significant to 
studies that require a detailed qualitative and quantitative 
analysis of volatile blends, such as those induced by herbi-
vores (Maja et al. 2014) or blends used to identify the pest 
species (Sun et al. 2019). Finally, there is no single method 
that meets all requirements for determining the whole set of 
BVOCs emitted by living plants and at the same time mini-
mising any disturbance (Tholl et al. 2006).

Ecosystem services provided by BVOCs

Ecosystem services (ES) are all the benefits that humans 
receive from functional ecosystems. ES can be divided 
(Fig. 6) into provisioning, regulating and cultural services 
(Locatelli et al. 2017). Provisioning services cover food, cel-
lulose and timber products, but also BVOCs that can be dis-
tilled for perfumes, flavourings, pharmaceuticals, turpentine 
oil, biodiesel, pest protection agents and after polymerisa-
tion as alternative organic feedstocks for green plastics and 
composites (Wilbon et al. 2013). Bioenergy sources of for-
ests such as residual wood (Thiffault et al. 2015) or distilled 
wood extracts, including common BVOCs such as MTs in 
pine oil (Vallinayagam et al. 2014), are considered important 
provisioning ES in future forests.

Regulating services include ecosystem function includ-
ing pollination services (Fig. 6), soil processes, hydrological 
cycles and water filtration and e.g. atmospheric  CO2 seques-
tration into living biomass and soil carbon (Locatelli et al. 
2017). Stored BVOCs such as the MT pools in dead wood 
(Turtola et al. 2002) and needle litter (Kainulainen et al. 
2003) can be important parts of carbon sequestration in the 
soil. Clean air is an important ES and BVOCs of forest trees 

provide that by removing e.g. ozone in forest air (Niinemets 
2018) and urban air (Grote et al. 2016). However, urban 
and periurban forests may also provide some disservices in 
polluted urban air, when their BVOCs participate in urban 
 O3 formation (Grote et al. 2016). In the forest atmosphere, 
BVOC reactions with  O3 and other reactive gases resulting 
in SOA formation may lead to improved light dispersion 
in the forest canopy (Niinemets 2018; Rap et al. 2018), the 
decreased urban heat island effect (Jin et al. 2010), processes 
supporting cloud formation (Joutsensaari et al. 2015; Zhao 
et al. 2017) and eventually to increased precipitation (Sheil 
and Murdiyarso 2009). The biological regulation includes 
pollination services, which are strongly dependent on flower 
BVOCs (Adebesin et al. 2017). Plants utilise BVOC-based 
communication between plants and between plants and other 
organisms. At the ecosystem scale, these BVOC signals pro-
vide many ESs, which maintain ecosystem resilience and 
prevent e.g. insect outbreaks in forests (Niinemets 2018). 
High vegetation diversity in forest ecosystems increases the 
level of ES, and more ES are found in forests with more tree 
species (Gamfeldt et al. 2013). Niinemets (2018) concluded 
that in future assessment of the regulatory services of forests 
under climate change, BVOCs at the vegetation–atmosphere 
interface should be a high-priority research target.

The third type of ES, cultural services of forest ecosys-
tems includes recreation services and spiritual services 
including health effects (Locatelli et al. 2017). Visits to 
urban forests have been shown to reduce blood pressure and 
heart rate in women and are thus associated with beneficial 
short-term changes in cardiovascular risk factors (Lanki 
et al. 2017). This has been explained by psychological stress 
relief such as reduced air pollution and noise exposure. 
However, sensing the smell of common forest BVOCs may 
also have a role in stress relief. MTs such as α-pinene and 
limonene are associated with the scent of clean or “fresh air” 
and are often used air fresheners for indoor air in households 
(Liu et al. 2007). Tsunetsugu et al. (2009) analysed Japanese 
studies of “forest bathing” (“Shinrin-yoku”) and found that 
sensing of a weak smell of α-pinene, a major conifer for-
est BVOC, induces a relaxed physiological state in humans, 
whereas a relatively strong smell of α-pinene, such as the 
one released after intensive logging of conifers, induces a 
stress state in the human body.

Historically, the positive health effects of BVOCs of for-
est trees (Eylers 2014) or BVOC reaction products such as 
ozone (Grose 2011) have been the major reason why sanato-
ria for tuberculosis patients were established since the early 
1900s in remote forest sites particularly in MT-rich conifer 
(Eylers 2014) and eucalyptus (Le Get 2018) forests. Roof 
terrain of a sanatorium, immediately above the treetops, was 
used for sunbathing and breathing the forest air by patients 
(Fig. 7a, b). It has also been argued that most of the posi-
tive effects of sunbathing treatments were rather from the 

Fig. 6  Classification of ecosystem services provided by BVOCs in 
forest ecosystems
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improved vitamin D availability for patients than from the 
BVOC rich air (Eylers 2014). During the 1940s, the discov-
ery of streptomycin as an important cure for tuberculosis led 
to the closure of sanatoria (Eylers 2014), albeit recently it 
has been shown that MTs improve efficiency of antibiotics 
against drug-resistant Mycobacterium tuberculosis strains 
(Sieniawska et al. 2018).

BVOCs have multiple functions in forests and forest eco-
systems, and it is obvious that they act in all three main types 
of ES. In agroecosystems, ecostacking (Hokkanen 2017) is 
a concept that combines in a synergistic manner the ES of 
functional biodiversity from biological and biogeochemical 
to socio-economic levels for sustainable plant production 
systems. Multifunctionality of BVOCs in forest ecosystems 
will give these chemicals important roles as physico-chemi-
cal tools to guide the ecostacking of ES of forest ecosystems 
for sustainable forestry to maintain regulating and cultural 
services, but at the same time allow improvement of the 
provisioning services gained from forests.

Climate change, BVOCs and future forests

Global food security for the fast-growing human popula-
tion requires an increasing need for land area to be used for 
agricultural production, which has led to a decrease in the 
global total forest area (Payn et al. 2015). However, at the 
same time the area of plantation forests has increased, par-
ticularly in temperate forests, and nearly 20% of all planta-
tions have been with introduced species (Payn et al. 2015). 
Another threat for current forests is global climate change 
which changes the abiotic growing conditions for local tree 
species and promotes spreading of introduced pests and 
pathogens (Couture and Lindroth 2012; Seidl et al. 2018). 
This could be an addition to the increased biotic stress from 
native pest species (Ghimire et al. 2017; Nordlander et al. 

2017) on forest trees in changed environmental conditions. 
BVOCs of forest trees are highly responsive to the abi-
otic (Peñuelas and Staudt 2010; Kivimäenpää et al. 2013) 
and biotic (Kivimäenpää et al. 2016; Ghimire et al. 2017) 
stresses related to climate change. Changes in BVOC emis-
sion profiles can predict survival of forest species and their 
further adaptation potential. For example, high isoprene 
emitters such as Salix and Populus have adapted to high 
soil humidity, while MT emitters are more common in xeric 
sites (Loreto et al. 2014), and thus, changes of precipitation 
may predict distribution of isoprene and MT emitters. High 
isoprene emitters such as Quercus spp. capable of quenching 
atmospheric  O3 could replace low or non-isoprene emitters 
such as Acer sp. (Lerdau 2007). Moreover, warming and 
improved growth may offset inhibitory effects of elevated 
 CO2 on isoprene emitters and increase total forest isoprene 
emissions (Sharkey and Monson 2017). Continuous moni-
toring of BVOCs has been suggested to be used as one of the 
potential monitoring methods of ecosystem level effects of 
climate change and adaptation capacity of forest vegetation 
community composition (Vautz et al. 2018).

Forests form large ecosystems, biomes, where the com-
position of tree species is mainly defined by precipitation 
and temperature and the species are optimally adapted to 
these conditions. Boreal and temperate deciduous forests 
may transition to shrubland or grassland if precipitation 
will become low (Smith and Smith 2015) and warming pro-
motes this process (Bergengren et al. 2001). At the forest 
ecosystem scale, the vegetation response to climate change, 
such as more frequent drought, can be rapid. The change in 
the tree species composition from mesic deciduous trees to 
more drought-tolerant species in the temperate forest zone 
has taken place in two decades (Zhang et al. 2018b). In the 
boreal zone, the increase in temperature by 4 °C and pre-
cipitation increase of 10% in a century will substantially 
increase the proportion of deciduous Betula species and 

Fig. 7  Health-related ecosystem services of conifer BVOCs for 
tuberculosis patients in sanatoriums. a The roof terrain for sunbath-
ing at forest canopy top level in Tarinaharju Sanatorium, Siilinjärvi, 
Finland. Photograph from the film Ne 45000 by Erkki Karu, 1933. 
Courtesy of © KAVI/Suomi-Filmi Oy, b Paimio Sanatorium in Pai-

mio, Finland, was designed by architect Alvar Aalto and completed 
in 1933. Sanatorium was established in a younger pine forest, and the 
roof terrain was equipped with planter boxes to grow pine saplings in 
order to improve the BVOC exposure of patients. Photograph by Gus-
taf Welin 1933. Courtesy of Alvar Aalto Museum
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change the proportions of P. sylvestris and P. abies leading 
e.g. to an over 400% increase in isoprene emission in most 
northern forests if P. abies becomes more common (Kel-
lomäki et al. 2001). An increasing proportion of isoprene 
in forest BVOC emissions may reduce MT-based BVOC 
nucleation and CCN formation (Kiendler-Scharr et al. 2009).

Trees connect air and soil gas and water exchange, and 
in this way, they have a certain capacity to localise the cli-
mate (Alkama and Cescatti 2016). Forests are important in 
attracting rain at longer distances from the sea by evapo-
rating moisture to the air and supporting cloud formation 
and rain intensity (Sheil and Murdiyarso 2009; Sheil 2018). 
The rains in more distant continental areas are “recycled” 
water based on evapotranspiration of the coastal forests, 
and the CCNs formed from reactive BVOCs of forest trees 
have important roles in this water recycling process (Sheil 
2018). Anthropogenic land-use change from forests to agri-
cultural land drives the global decreasing trend for isoprene 
and MT emissions (Hantson et al. 2017). Massive deforesta-
tions (Bala et al. 2007; Nakamura et al. 2017) may break the 
water recycling gradient from coastal areas to inner conti-
nental areas leading to extended desertification (Sheil and 
Murdiyarso 2009). This means that the evapotranspiration 
and BVOCs emitted by one forest stand might not improve 
the climatic conditions of only the emitter stand, but the 
most important beneficiary could be a forest stand located 
hundreds of kilometres downwind from the BVOC emission 
site (Joutsensaari et al. 2015).

BVOCs in the atmosphere are biological (stress vs. non-
stress) indicators (Vautz et al. 2018) that produce valuable 
information of tree condition and can be used to improve 
forest management. As climate is changing, BVOC emis-
sions will change and eventually will help plants to adapt to 
new conditions. Remote sensing with satellites that estimate 
 CO2 uptake by vegetation with a photosynthetic reflectance 
index (PRI) (Reuter et al. 2017) can be used for monitoring 
of atmospheric formaldehyde (HCHO), a major atmospheric 
breakdown product of isoprene, as a proxy for BVOCs (Fos-
ter et al. 2014; Kefauver et al. 2014). Combined with PRI 
data (Kefauver et al. 2013), BVOC monitoring with satellites 
can be used for online monitoring of large areas of forest to 
indicate early warning signs for climate change effects, such 
as tropospheric  O3 injuries (Kefauver et al. 2013). Aircrafts 
can be used e.g. for intensive online sampling and analysis 
of atmospheric BVOCs (Hu et al. 2015), but close-to-canopy 
remote sensing of forest BVOC emissions with drones will 
be possible with advanced sensor techniques (Chang et al. 
2016). The ICOS measurement tower network in Europe 
allows simultaneous and continuous monitoring of BVOCs 
from soil surface, canopy layer and the atmosphere above the 
forest stand (Lappalainen et al. 2009; Kulmala et al. 2013). 
The data of monitoring stations can be combined with the 
data of satellite measurements and used for modelling of 

forest responses to climatic changes and the strength of the 
feedback loops of forests to BVOC, aerosols and clouds 
(Kulmala et al. 2013).

Concluding remarks

BVOCs in forests have a multitude of functions at various 
scales, and it is obvious that due to the enormous diversity of 
primary BVOCs and their atmospheric reaction products, we 
only understand a minor part of their role in forest ecosystem 
function. Plants face a diverse range of metabolic and physi-
ological challenges, which can build up when the climate 
is changing rapidly. With rapid development of the field of 
chemical ecology, terpenoid secondary compounds have 
been shown to play major defensive roles in the survival of 
trees and in various ecosystem interactions including large-
scale ecosystem and biosphere–atmosphere feedbacks such 
as the roles of BVOCs in control of precipitation. For better 
understanding of the role of BVOCs in forest ecosystems, 
it is essential that the basic processes related to BVOC bio-
synthesis, transportation and emissions are better known. We 
know how e.g. herbivorous insects and their natural enemies 
perceive molecular BVOC signals, but we still do not fully 
know how other plants are sensing the “cry for help” sig-
nals released by attacked plants. When the molecular basis 
of plant-to-plant signalling is unravelled, it will open pos-
sibilities to reduce and control the stress of growing forest 
trees caused by e.g. extreme weather conditions related to 
changing climate, herbivore and pathogen attack and forest 
management activities.
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