13 research outputs found
Recommended from our members
A study of steel alloys for potential use in CO2 sequestration
The effect of CO2 as a greenhouse gas, and the potential of global warming, has led to the study of sequestration of CO2 as a mineral carbonate. Some of the processes of mineral sequestration involve handing large tonnages of silicate minerals and reacting them with CO2. In this study the Albany Research Center evaluated the effects of wear and corrosion individually, and any possible synergetic effects resulting from a combination of wear and corrosion, on steel alloys that might be used in CO2 sequestration. By understanding the mechanism of slurry material loss, a better selection of erosion/corrosion resistant steel alloys can be chosen which in turn help plan construction costs. Four different conventional alloys were chosen. The alloys include AISI 1080 carbon steel, a 9Cr, 1 Mo steel, a 316 stainless steel, and a heat treatable 440C stainless steel. These materials covered a large range of alloy composition and cost. A variety of erosion and corrosion tests were used to evaluate the steels response to selected sequestration environments. The tests used included: (i) wear from dry Jet and HAET erosion tests, (ii) corrosion from immersion tests, and (iii) slurry erosion/corrosion tests. The slurry wear tests were conducted using a 270-μm silica abrasive in water and a solution (a mixture of sodium chloride, magnesium chloride, and sodium carbonate) saturated with CO2 at pH levels of 4.5 and 9.4. The results of these tests were compared with the results dry erosion and immersion corrosion tests. The results of the various tests were then used to evaluate the mechanism of material loss and determine is the presence of synergetic effects. The corrosion test showed little loss of material for all alloys. The erosion tests showed only a small difference between alloys. The slurry tests showed synergistic effect of combining erosion and corrosion resulted in a significant additional loss of material. It was further found both increasing the hardness and amounts of substitution chromium decreased the alloy loss rate
Recommended from our members
Abrasion and erosion testing of materials used in power production from coal
The Albany Research Center (ARC) has a long history of studying abrasive wear, related to mineral testing, handling, and processing. The center has also been instrumental in the design and development of wear test procedures and equipment. Research capabilities at ARC include Pin-on-Drum, Pin-on-Disk, and Dry Sand/Rubber Wheel abrasion tests, Jaw Crusher gouging test, Ball-on-Ball Impact test, and Jet erosion tests. Abrasive and erosive wear studies have been used to develop both new alloys and improved heat treatments of commercial alloys. As part of ARC’s newest iteration on wear testing to evaluate materials for use in new and existing pulverized coal combustion and gasifier power systems, the ARC has designed and constructed a new High Temperature Hostile Atmosphere Erosion Wear Test (HAET). This new piece of test apparatus is designed for erosive particle velocities of 10-40 m/sec and temperatures from room temperature (23°C) to 800+°C, with special control over the gas atmosphere. A variable speed whirling arm design is used to vary the impact energy of the gravity fed erosive particles. The specimens are mounted at the edge of a disk and allow a full range of impingement angles to be selected. An electric furnace heats the specimens in an enclosed retort to the selected temperature. Tests include both oxidizing conditions and reducing conditions. A range of gases, including CO, CO2, CH4, H2, H2S, HCl, N2, O2, and SO2 can be mixed and delivered to the retort. During the erosion testing a stream of abrasive powder is delivered in front of the specimens. This apparatus is designed to use low abrasive fluxes, which simulate real operating conditions in commercial power plants. Currently ~270 μm SiO2 particles are being used to simulate the abrasive impurities typically found in coal. Since operators are always striving for longer lifetimes and higher operating temperatures, this apparatus can help elucidate mechanisms of wastage and identify superior materials. This talk will present some initial results from this new environmentally controllable erosion test apparatus
Recommended from our members
High temperature erosion testing in a gasifier environment
The development of materials with the ability to operate in adverse conditions while resisting the effects of erosion and corrosion is essential to the future success of high efficiency power plants. Many next generation coal power plants are envisioned as combined cycle, with gasifiers used to produce both steam and syngas. The gasifier sections of these plants require materials of construction that are resistant to the effects of erosion from silica found in the gas streams and corrosion caused by a reducing atmosphere that may contain sulfur and chloride compounds. The Albany Research Center has developed a test apparatus designed to test the erosion-resistance of candidate materials under a range of environmental conditions, including those found in gasifiers. This Hostile Atmosphere Erosion Wear test apparatus (HAET) has been used to evaluate a group of high alloy candidate materials such as iron aluminide and Haynes HR 160, and compare them to a conventional 310 stainless steel. Erosion tests were conducted using 270μm silica abrasive, a typical impact velocities of 20 m/sec at temperatures up to 700°C in an atmosphere simulating gasifier conditions. The effects of erosion under these conditions on the surface scales that form are described. The total loss rate, loss rates due to erosion and corrosion for the test materials are compared
Recommended from our members
Erosive wear of selected materials for fossil energy applications
A number of materials have been evaluated to determine their erosion resistance for fossil energy applications. This is part of a larger program to study wear and corrosion at Albany Research Center. This paper will present the results for some of these materials, including FeAl, FeAl cermets, WC-Co cemented carbides, Si3N4-MoSi2, Si3N4, Stellite 6B, white cast irons and 440C steel. Trends in erosion rates due to material properties and erosive conditions will be presented. FeAl cermets performed well compared to the WC-Co cemented carbides. The interparticle spacing of the WC-Co cemented carbides correlated with the erosion rate. The erosion rate of the WC-Co cemented carbides decreased as the interparticle spacing decreased. It is important to realize that erosion resistance is not an intrinsic material property, but is a system response. A change in the wear environment can significantly alter the relative rankings of materials with respect to their wear rate. For example, at relatively low velocities, the carbides in the white cast irons are more erosion resistant than the matrix, while at higher velocities the matrix is more erosion resistant
EROSIVE WEAR OF SELECTED MATERIALS FOR FOSSIL ENERGY APPLICATIONS
ABSTRACT A number of materials have been evaluated to determine their erosion resistance for fossil energy applications. This is part of a larger program to study wear and corrosion at Albany Research Center. This paper will present the results for some of these materials, including FeAl, FeAl cermets, WC-Co cemented carbides, Si 3 N 4 -MoSi 2 , Si 3 N 4 , Stellite 6B, white cast irons and 440C steel. Trends in erosion rates due to material properties and erosive conditions will be presented. FeAl cermets performed well compared to the WC-Co cemented carbides. The interparticle spacing of the WC-Co cemented carbides correlated with the erosion rate. The erosion rate of the WC-Co cemented carbides decreased as the interparticle spacing decreased. It is important to realize that erosion resistance is not an intrinsic material property, but is a system response. A change in the wear environment can significantly alter the relative rankings of materials with respect to their wear rate. For example, at relatively low velocities, the carbides in the white cast irons are more erosion resistant than the matrix, while at higher velocities the matrix is more erosion resistant
Recommended from our members
Fracture energies of Zircaloy and some zirconium alloys
The fracture mechanics of Charpy V-notch specimens of
Zircaloy-4 and phosphorus contaminated Zircaloy-4 were
investigated. Three-point bend and impact tests with Charpy
V-notch samples provided an efficient and economical method
of fracture evaluation. Fracture failure was monitored by
the force-displacement curve. Failure was initially
analyzed using fracture toughness values as recommended by
ASTM. Zirconium, a ductile material, failed to meet the
validity criteria for determining KIC. The force-displacement
curves were then dissected into four distinct segments
(yield, plastic, crack, and tear) and the integrated energy
values determined and analyzed. The combination of stress
values, energy values, and surface analyses made it possible
to explain the fracture mechanism. Zirconium fracture was
studied as a function of (1) thickness (0.7 to 2.0cm),
(2) orientation (TL, TS, LS, LT), (3) temperature (-200°C to
+100°C), (4) loading rate (static and dynamic), (5) V-notch configuration (blunt, pre-cracked, and side-grooved), and
(6) phosphorus concentration (10 to 360 ppm).
Fracture toughness criteria could not be met for any
orientation, for temperature as low as -200°C, for thickness
as great as 2.0cm nor for phosphorus concentration as high
as 360 ppm. As a substitute for fracture toughness values,
energies were studied. Energy analysis showed that the
tear energy (or crack arrest energy) dominated at high
temperature. The energy required to initiate cracking was
independent of temperature. Phosphorus concentration
decreased the tear energy and crack propagation energy but
did not affect the energy for crack initiation. Phosphorus
did not seriously affect energy values or fracture toughness.
Loading rate strongly affected fracture toughness
but was unimportant to energy values. Sample orientation
strongly affected energy values. SEM studies of different
orientations as a function of temperature revealed several
fracture mechanisms contributing to failure including micro-void
formations microvoid coalescence, and serpentine glide.
Charpy V-notch geometries strongly affected the strain
constraints and the energy required for crack initiation,
propagation, and tear. Sample thickness was independent of
all energies except tear energy
Recommended from our members
SEM evaluation of advanced refractory failures in slagging gasifiers
The SEM is an invaluable tool in the evaluation of advanced refractories and their failure. A reaction vessel?s refractory liner, at minimum, must protect the reaction vessel from elevated temperatures, corrosive slag and thermal cycling. To understand the failure mechanisms ARC staff had first to determine how an advanced chrome rich refractory was attacked by various components that make up a slag. Refractory cups were made from the refractory of interest and various compounds that can be found in a slag such as CaO, SiO2, Fe2O3, NaCl were placed into the test cups and fired for 24 hours at the required temperature with the desired atmosphere. The cups are prepared for examination by embedding in epoxy and cross sectioning. SEM examination revealed how various slag compositions attacked and penetrated the refractory. The slag could corrode, free refractory grains or react with the refractory and from a new compound. It was found that the only way to measure slag component penetration was with multiple elemental X-ray maps. SiO2 penetrated deeply and in many instances moved through the cup. The knowledge of slag refractory interactions gather during cup testing was applied to actual spent refractory from reaction vessels. Obtaining samples from the reaction vessel itself proved difficult due to time constraints imposed in relining. Samples were selected based on spent brick shape, color or location in the heap of spent refractory. Sample preparation affected the results dry, water or oil coolant during cutting may dissolve reaction products. The complex reactions between the slag and refractory made for very interesting and time consuming evaluation. Elemental X-ray maps at low and high magnification combined with point analysis aided in locating regions of interest. Crystals were found growing in voids and appear to be from vapor deposition. Other crystal structures are from the slag refractory interaction. Knowledge gathered from this and other supporting research resulted in a new patented refractory composition that resists slag penetration