222 research outputs found

    QuickSNP: an automated web server for selection of tagSNPs

    Get PDF
    Although large-scale genetic association studies involving hundreds to thousands of SNPs have become feasible, the associated cost is substantial. Even with the increased efficiency introduced by the use of tagSNPs, researchers are often seeking ways to maximize resource utilization given a set of SNP-based gene-mapping goals. We have developed a web server named QuickSNP in order to provide cost-effective selection of SNPs, and to fill in some of the gaps in existing SNP selection tools. One useful feature of QuickSNP is the option to select only gene-centric SNPs from a chromosomal region in an automated fashion. Other useful features include automated selection of coding non-synonymous SNPs, SNP filtering based on inter-SNP distances and information regarding the availability of genotyping assays for SNPs and whether they are present on whole genome chips. The program produces user-friendly summary tables and results, and a link to a UCSC Genome Browser track illustrating the position of the selected tagSNPs in relation to genes and other genomic features. We hope the unique combination of features of this server will be useful for researchers aiming to select markers for their genotyping studies. The server is freely available and can be accessed at the URL http://bioinformoodics.jhmi.edu/quickSNP.pl

    What Should a Psychiatrist Know About Genetics? Review and Recommendations From the Residency Education Committee of the International Society of Psychiatric Genetics.

    Get PDF
    The International Society of Psychiatric Genetics (ISPG) created a Residency Education Committee with the purpose of identifying key genetic knowledge that should be taught in psychiatric training programs. Thirteen committee members were appointed by the ISPG Board of Directors, based on varied training, expertise, gender, and national origin. The Committee has met quarterly for the past 2 years, with periodic reports to the Board and to the members of the Society. The information summarized includes the existing literature in the field of psychiatric genetics and the output of ongoing large genomics consortia. An outline of clinically relevant areas of genetic knowledge was developed, circulated, and approved. This document was expanded and annotated with appropriate references, and the manuscript was developed. Specific information regarding the contribution of common and rare genetic variants to major psychiatric disorders and treatment response is now available. Current challenges include the following: (1) Genetic testing is recommended in the evaluation of autism and intellectual disability, but its use is limited in current clinical practice. (2) Commercial pharmacogenomic testing is widely available, but its utility has not yet been clearly established. (3) Other methods, such as whole exome and whole genome sequencing, will soon be clinically applicable. The need for informed genetic counseling in psychiatry is greater than ever before, knowledge in the field is rapidly growing, and genetic education should become an integral part of psychiatric training

    DNA Methylation Signatures within the Human Brain

    Get PDF
    DNA methylation is a heritable modification of genomic DNA central to development, imprinting, transcriptional regulation, chromatin structure, and overall genomic stability. Aberrant DNA methylation of individual genes is a hallmark of cancer and has been shown to play an important role in neurological disorders such as Rett syndrome. Here, we asked whether normal DNA methylation might distinguish individual brain regions. We determined the quantitative DNA methylation levels of 1,505 CpG sites representing 807 genes with diverse functions, including proliferation and differentiation, previously shown to be implicated in human cancer. We initially analyzed 76 brain samples representing cerebral cortex (n=35), cerebellum (n=34), and pons (n=7), along with liver samples (n=3) from 43 individuals. Unsupervised hierarchical analysis showed clustering of 33 of 35 cerebra distinct from the clustering of 33 of 34 cerebella, 7 of 7 pons, and all 3 livers. By use of comparative marker selection and permutation testing, 156 loci representing 118 genes showed statistically significant differences—a ⩾17% absolute change in DNA methylation (P<.004)—among brain regions. These results were validated for all six genes tested in a replicate set of 57 samples. Our data suggest that DNA methylation signatures distinguish brain regions and may help account for region-specific functional specialization

    Exonic DNA Sequencing of ERBB4 in Bipolar Disorder

    Get PDF
    The Neuregulin-ErbB4 pathway plays a crucial role in brain development and constitutes one of the most biologically plausible signaling pathways implicated in schizophrenia and, to a lesser extent, in bipolar disorder (BP). However, recent genome-wide association analyses have not provided evidence for common variation in NRG1 or ERBB4 influencing schizophrenia or bipolar disorder susceptibility. In this study, we investigate the role of rare coding variants in ERBB4 in BP cases with mood-incongruent psychotic features, a form of BP with arguably the greatest phenotypic overlap with schizophrenia. We performed Sanger sequencing of all 28 exons in ERBB4, as well as part of the promoter and part of the 3′UTR sequence, hypothesizing that rare deleterious variants would be found in 188 cases with mood-incongruent psychosis from the GAIN BP study. We found 42 variants, of which 16 were novel, although none were non-synonymous or clearly deleterious. One of the novel variants, present in 11.2% of cases, is located next to an alternative stop codon, which is associated with a shortened transcript of ERBB4 that is not translated. We genotyped this variant in the GAIN BP case-control samples and found a marginally significant association with mood-incongruent psychotic BP compared with controls (additive model: OR = 1.64, P-value = 0.055; dominant model: OR = 1.73. P-value = 0.039). In conclusion, we found no rare variants of clear deleterious effect, but did uncover a modestly associated novel variant that could affect alternative splicing of ERBB4. However, the modest sample size in this study cannot definitively rule out a role for rare variants in bipolar disorder and studies with larger sample sizes are needed to confirm the observed association

    Genome-Wide Association of Bipolar Disorder Suggests an Enrichment of Replicable Associations in Regions near Genes

    Get PDF
    Although a highly heritable and disabling disease, bipolar disorder's (BD) genetic variants have been challenging to identify. We present new genotype data for 1,190 cases and 401 controls and perform a genome-wide association study including additional samples for a total of 2,191 cases and 1,434 controls. We do not detect genome-wide significant associations for individual loci; however, across all SNPs, we show an association between the power to detect effects calculated from a previous genome-wide association study and evidence for replication (P = 1.5×10−7). To demonstrate that this result is not likely to be a false positive, we analyze replication rates in a large meta-analysis of height and show that, in a large enough study, associations replicate as a function of power, approaching a linear relationship. Within BD, SNPs near exons exhibit a greater probability of replication, supporting an enrichment of reproducible associations near functional regions of genes. These results indicate that there is likely common genetic variation associated with BD near exons (±10 kb) that could be identified in larger studies and, further, provide a framework for assessing the potential for replication when combining results from multiple studies

    The association between genetically determined ABO blood types and major depressive disorder

    Get PDF
    ABO blood types and their corresponding antigens have long been assumed to be related to different human diseases. So far, smaller studies on the relationship between mental disorders and blood types yielded contra-dicting results. In this study we analyzed the association between ABO blood types and lifetime major depressive disorder (MDD). We performed a pooled analysis with data from 26 cohorts that are part of the MDD working group of the Psychiatric Genomics Consortium (PGC). The dataset included 37,208 individuals of largely Eu-ropean ancestry of which 41.6% were diagnosed with lifetime MDD. ABO blood types were identified using three single nucleotide polymorphisms in the ABO gene: rs505922, rs8176746 and rs8176747. Regression analyses were performed to assess associations between the individual ABO blood types and MDD diagnosis as well as putative interaction effects with sex. The models were adjusted for sex, cohort and the first ten genetic principal components. The percentage of blood type A was slightly lower in cases than controls while blood type O was more prominent in cases. However, these differences were not statistically significant. Our analyses found no evidence of an association between ABO blood types and major depressive disorder

    Minimal phenotyping yields genome-wide association signals of low specificity for major depression

    Get PDF
    Minimal phenotyping refers to the reliance on the use of a small number of self-reported items for disease case identification, increasingly used in genome-wide association studies (GWAS). Here we report differences in genetic architecture between depression defined by minimal phenotyping and strictly defined major depressive disorder (MDD): the former has a lower genotype-derived heritability that cannot be explained by inclusion of milder cases and a higher proportion of the genome contributing to this shared genetic liability with other conditions than for strictly defined MDD. GWAS based on minimal phenotyping definitions preferentially identifies loci that are not specific to MDD, and, although it generates highly predictive polygenic risk scores, the predictive power can be explained entirely by large sample sizes rather than by specificity for MDD. Our results show that reliance on results from minimal phenotyping may bias views of the genetic architecture of MDD and impede the ability to identify pathways specific to MDD. Genetic analyses of depression based on minimal phenotyping identify nonspecific genetic risk factors shared between major depressive disorder (MDD) and other psychiatric conditions, suggesting that this approach may have limited ability to identify pathways specific to MDD

    Genome-Wide DNA Methylation Scan in Major Depressive Disorder

    Get PDF
    While genome-wide association studies are ongoing to identify sequence variation influencing susceptibility to major depressive disorder (MDD), epigenetic marks, such as DNA methylation, which can be influenced by environment, might also play a role. Here we present the first genome-wide DNA methylation (DNAm) scan in MDD. We compared 39 postmortem frontal cortex MDD samples to 26 controls. DNA was hybridized to our Comprehensive High-throughput Arrays for Relative Methylation (CHARM) platform, covering 3.5 million CpGs. CHARM identified 224 candidate regions with DNAm differences >10%. These regions are highly enriched for neuronal growth and development genes. Ten of 17 regions for which validation was attempted showed true DNAm differences; the greatest were in PRIMA1, with 12–15% increased DNAm in MDD (p = 0.0002–0.0003), and a concomitant decrease in gene expression. These results must be considered pilot data, however, as we could only test replication in a small number of additional brain samples (n = 16), which showed no significant difference in PRIMA1. Because PRIMA1 anchors acetylcholinesterase in neuronal membranes, decreased expression could result in decreased enzyme function and increased cholinergic transmission, consistent with a role in MDD. We observed decreased immunoreactivity for acetylcholinesterase in MDD brain with increased PRIMA1 DNAm, non-significant at p = 0.08
    corecore