219 research outputs found

    Promoting Work in Public Housing: The Effectiveness of Job-Plus

    Get PDF
    Measures the effectiveness of employment related assistance, use of rent breaks as an incentive to work more, and activities that promote neighbor-to-neighbor support for work in Baltimore, Chattanooga, Dayton, Los Angeles, St. Paul, and Seattle

    A Multi-Level Analysis of the Impacts of Services Provided By the UK Employment Retention and Advancement Demonstration

    Get PDF
    Background: The United Kingdom Employment Retention and Advancement (U.K. ERA) demonstration was the largest and most comprehensive social experiment ever conducted in the United Kingdom. It examined the extent to which a combination of postemployment advisory support and financial incentives could help lone parents on welfare to find sustained employment with prospects for advancement. ERA was experimentally tested across more than 50 public employment service offices and, within each office, individuals were randomly assigned to either a program (or treatment) group (eligible for ERA) or a control group (not eligible). Method: article presents the results of a multilevel nonexperimental analysis that examines the variation in office-level impacts and attempts to understand what services provided in the offices tend to be associated with impacts. Result: The analysis suggests that impacts were greater in offices that emphasized in-work advancement, support while working and financial bonuses for sustained employment, and also in those offices that assigned more caseworkers to ERA participants. Offices that encouraged further education had smaller employment impacts. Conclusion: Plausible results are obtained identifying those particular implementation features that tended to be linked to stronger impacts of ERA. The methodology employed also allows the identification of which services are associated with employment and welfare receipt of control families receiving benefits under the traditional New Deal for Lone Parent program

    Dietary responses to a multiple sclerosis diagnosis: a qualitative study

    Get PDF
    Background/objectives: Multiple sclerosis (MS) is an immune-mediated disease with no known cure and insufficient evidence to support a special therapeutic diet to alter symptom management or disease progression. Several studies have reported dietary changes made by people with MS, but there has been limited investigation into experiences surrounding diet in those recently diagnosed. This study explored responses to diet after a recent diagnosis of MS in people living in Western Australia. Subjects/methods: Eleven adults with MS (mean time since diagnosis 8 months) participated in semi-structured interviews focusing on responses to diet since MS diagnosis. Interviews were transcribed, coded and analysed using grounded theory principles. Results: Three theme responses emerged; (1) the perceived incompatibility of lack of/or generalised dietary advice with disease seriousness at the time of diagnosis; (2) extensive personal research and information seeking with difficulty judging credibility, and (3) self-experimentation with diet to either control MS symptoms or to cure MS. Conclusions: Given the seriousness of the disease, there is a perceived gap in dietary information provided at the time of diagnosis. Healthcare professionals should address concerns with alternative therapeutic diets advertised to treat or cure MS, and clearly convey the reasoning for the general healthy dietary recommendations. This would better align advice with the perceptions about the role of diet in MS, assist people with MS in need of information and minimise dietary self-experimentation. Future research should explore the importance of diet for those who have had MS for a longer period of time

    From Data to Software to Science with the Rubin Observatory LSST

    Full text link
    The Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) dataset will dramatically alter our understanding of the Universe, from the origins of the Solar System to the nature of dark matter and dark energy. Much of this research will depend on the existence of robust, tested, and scalable algorithms, software, and services. Identifying and developing such tools ahead of time has the potential to significantly accelerate the delivery of early science from LSST. Developing these collaboratively, and making them broadly available, can enable more inclusive and equitable collaboration on LSST science. To facilitate such opportunities, a community workshop entitled "From Data to Software to Science with the Rubin Observatory LSST" was organized by the LSST Interdisciplinary Network for Collaboration and Computing (LINCC) and partners, and held at the Flatiron Institute in New York, March 28-30th 2022. The workshop included over 50 in-person attendees invited from over 300 applications. It identified seven key software areas of need: (i) scalable cross-matching and distributed joining of catalogs, (ii) robust photometric redshift determination, (iii) software for determination of selection functions, (iv) frameworks for scalable time-series analyses, (v) services for image access and reprocessing at scale, (vi) object image access (cutouts) and analysis at scale, and (vii) scalable job execution systems. This white paper summarizes the discussions of this workshop. It considers the motivating science use cases, identified cross-cutting algorithms, software, and services, their high-level technical specifications, and the principles of inclusive collaborations needed to develop them. We provide it as a useful roadmap of needs, as well as to spur action and collaboration between groups and individuals looking to develop reusable software for early LSST science.Comment: White paper from "From Data to Software to Science with the Rubin Observatory LSST" worksho

    DISC1: Structure, Function, and Therapeutic Potential for Major Mental Illness

    Get PDF

    Low exposure long-baseline neutrino oscillation sensitivity of the DUNE experiment

    Full text link
    The Deep Underground Neutrino Experiment (DUNE) will produce world-leading neutrino oscillation measurements over the lifetime of the experiment. In this work, we explore DUNE's sensitivity to observe charge-parity violation (CPV) in the neutrino sector, and to resolve the mass ordering, for exposures of up to 100 kiloton-megawatt-years (kt-MW-yr). The analysis includes detailed uncertainties on the flux prediction, the neutrino interaction model, and detector effects. We demonstrate that DUNE will be able to unambiguously resolve the neutrino mass ordering at a 3σ\sigma (5σ\sigma) level, with a 66 (100) kt-MW-yr far detector exposure, and has the ability to make strong statements at significantly shorter exposures depending on the true value of other oscillation parameters. We also show that DUNE has the potential to make a robust measurement of CPV at a 3σ\sigma level with a 100 kt-MW-yr exposure for the maximally CP-violating values \delta_{\rm CP}} = \pm\pi/2. Additionally, the dependence of DUNE's sensitivity on the exposure taken in neutrino-enhanced and antineutrino-enhanced running is discussed. An equal fraction of exposure taken in each beam mode is found to be close to optimal when considered over the entire space of interest

    Measurements of the ΜΌ\nu_{\mu} and ΜˉΌ\bar{\nu}_{\mu}-induced Coherent Charged Pion Production Cross Sections on 12C^{12}C by the T2K experiment

    Get PDF
    We report an updated measurement of the ΜΌ\nu_{\mu}-induced, and the first measurement of the ΜˉΌ\bar{\nu}_{\mu}-induced coherent charged pion production cross section on 12C^{12}C nuclei in the T2K experiment. This is measured in a restricted region of the final-state phase space for which pÎŒ,π>0.2p_{\mu,\pi} > 0.2 GeV, cos⁥(ΞΌ)>0.8\cos(\theta_{\mu}) > 0.8 and cos⁥(Ξπ)>0.6\cos(\theta_{\pi}) > 0.6, and at a mean (anti)neutrino energy of 0.85 GeV using the T2K near detector. The measured ΜΌ\nu_{\mu} CC coherent pion production flux-averaged cross section on 12C^{12}C is (2.98±0.37(stat.)±0.31(syst.)+0.49−0.00(Q2 model))×10−40 cm2(2.98 \pm 0.37 (stat.) \pm 0.31 (syst.) \substack{ +0.49 \\ -0.00 } \mathrm{ (Q^2\,model)}) \times 10^{-40}~\mathrm{cm}^{2}. The new measurement of the ΜˉΌ\bar{\nu}_{\mu}-induced cross section on 12C^{12}{C} is (3.05±0.71(stat.)±0.39(syst.)+0.74−0.00(Q2 model))×10−40 cm2(3.05 \pm 0.71 (stat.) \pm 0.39 (syst.) \substack{ +0.74 \\ -0.00 } \mathrm{(Q^2\,model)}) \times 10^{-40}~\mathrm{cm}^{2}. The results are compatible with both the NEUT 5.4.0 Berger-Sehgal (2009) and GENIE 2.8.0 Rein-Sehgal (2007) model predictions

    A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE

    Get PDF
    This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model

    Snowmass Neutrino Frontier: DUNE Physics Summary

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of ÎŽCP. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter
    • 

    corecore