90 research outputs found
The hydrography and circulation of the upper 1200 meters in the tropical North Atlantic during 1982-91
We assemble a collection of 7591 conductivity-temperature-depth stations in the tropical Atlantic between 5S and 20N for the period 1982–1991 using data from the Soviet SECTIONS program enhanced by contributions primarily from the WESTRAX and FOCAL/SEQUAL programs. Most of the stations are west of 30W, forming a series of 21 surveys. In addition there were five multi-ship basinwide surveys, each taking 1.5–3 months to complete. The quality of the SECTIONS data is discussed and comparisons between the data sets are shown. Within the pycnocline, southern water is distinguished by salinity that is 0.3 psu lower than its northern counterpart at the same density. This difference allows us to distinguish the origin of pycnocline water. Based on this information together with geostrophic analysis we confirm that much of the water transported across the equator in the North Brazil Current retroflects eastward south of 8N. In summer and fall the water of the North Brazil Current merges with the water of the North Equatorial Current to form the North Equatorial Countercurrent, whose axis shifts southward with depth. East of 35W part of the mass transport in the Countercurrent is lost to the equatorial zone, while the rest continues eastward. During winter and spring eastward currents are found in two latitude bands, a surface current between 5–10N and a weaker current south of 5N confined to the thermocline. This latter North Equatorial Undercurrent has no surface expression in winter. During the summer and fall the northern boundary of Southern Hemisphere water at pycnocline depths is given by the North Equatorial Countercurrent. During the rest of the year the northern boundary of Southern Hemisphere water only penetrates to the edge of the weaker North Equatorial Undercurrent south of 5N. The availability of ten years of data allows us to examine aspects of year-to-year variability. Among these results the data set reveals strong meandering of the North Equatorial Countercurrent between 42W and 35W during the summer of 1987. The meandering also appears in contemporaneous Geosat altimetry. Another unusual feature occurred in the summer 1986 when there was a strong thermocline current transporting water northward at the rate of 26 Sv. Water mass analysis shows that this current was the result of a pressure gradient set up by an intrusion of warm low-salinity water from the Southern Hemisphere. The fact that this high transport occurred in the interior ocean suggests that interior flows must be monitored during any attempt to observe meridional transports of mass or heat
Interannual to Decadal Variability of Atlantic Water in the Nordic and Adjacent Seas
Warm salty Atlantic Water is the main source water for the Arctic Ocean and thus plays an important role in the mass and heat budget of the Arctic. This study explores interannual to decadal variability of Atlantic Water properties in the Nordic Seas area where Atlantic Water enters the Arctic, based on a reexamination of the historical hydrographic record for the years 1950-2009, obtained by combining multiple data sets. The analysis shows a succession of four multi-year warm events where temperature anomalies at 100m depth exceed 0.4oC, and three cold events. Three of the four warm events lasted 3-4 years, while the fourth began in 1999 and persists at least through 2009. This most recent warm event is anomalous in other ways as well, being the strongest, having the broadest geographic extent, being surface-intensified, and occurring under exceptional meteorological conditions. Three of the four warm events were accompanied by elevated salinities consistent with enhanced ocean transport into the Nordic Seas, with the exception of the event spanning July 1989-July 1993. Of the three cold events, two lasted for four years, while the third lasted for nearly 14 years. Two of the three cold events are associated with reduced salinities, but the cold event of the 1960s had elevated salinities. The relationship of these events to meteorological conditions is examined. The results show that local surface heat flux variations act in some cases to reinforce the anomalies, but are too weak to be the sole cause
From salty to fresh—salinity processes in the Upper-ocean Regional Study-2 (SPURS-2) : diagnosing the physics of a rainfall-dominated salinity minimum
Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 1 (2015): 150-159, doi:10.5670/oceanog.2015.15.One of the notable features of the global ocean is that the salinity of the North Atlantic is about 1 psu higher than that of the North Pacific. This contrast is thought to be due to one of the large asymmetries in the global water cycle: the transport of water vapor by the trade winds across Central America and the lack of any comparable transport into the Atlantic from the Sahara Desert. Net evaporation serves to maintain high Atlantic salinities, and net precipitation lowers those in the Pacific. Because the effects on upper-ocean physics are markedly different in the evaporating and precipitating regimes, the next phase of research in the Salinity Processes in the Upper-ocean Regional Study (SPURS) must address a high rainfall region. It seemed especially appropriate to focus on the eastern tropical Pacific that is freshened by the water vapor carried from the Atlantic. In a sense, the SPURS-2 Pacific region will be looking at the downstream fate of the freshwater carried out of the SPURS-1 North Atlantic region. Rainfall tends to lower surface density and thus inhibit vertical mixing, leading to quite different physical structure and dynamics in the upper ocean. Here, we discuss the motivations for the location of SPURS-2 and the scientific questions we hope to address
The Community Climate System Model version 3 (CCSM3)
Author Posting. © American Meteorological Society 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 19 (2006): 2122–2143, doi:10.1175/JCLI3761.1.The Community Climate System Model version 3 (CCSM3) has recently been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale dynamics, variability, and climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for the atmosphere and land and a grid with approximately 1° resolution for the ocean and sea ice. The new system incorporates several significant improvements in the physical parameterizations. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land–atmosphere fluxes, ocean mixed layer processes, and sea ice dynamics. There are significant improvements in the sea ice thickness, polar radiation budgets, tropical sea surface temperatures, and cloud radiative effects. CCSM3 can produce stable climate simulations of millennial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean–atmosphere fluxes in coastal regions west of continents, the spectrum of ENSO variability, the spatial distribution of precipitation in the tropical oceans, and continental precipitation and surface air temperatures. Work is under way to extend CCSM to a more accurate and comprehensive model of the earth's climate system.We would like to acknowledge the
substantial contributions to and support for the CCSM
project from the National Science Foundation (NSF),
the Department of Energy (DOE), the National Oceanic
and Atmospheric Administration, and the National
Aeronautics and Space Administration
ENSO’s impact on the gap wind regions of the eastern tropical Pacific Ocean
Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 3549–3565, doi:10.1175/JCLI-D-11-00320.1.The recently released NCEP Climate Forecast System Reanalysis (CFSR) is used to examine the response to ENSO in the northeast tropical Pacific Ocean (NETP) during 1979–2009. The normally cool Pacific sea surface temperatures (SSTs) associated with wind jets through the gaps in the Central American mountains at Tehuantepec, Papagayo, and Panama are substantially warmer (colder) than the surrounding ocean during El Niño (La Niña) events. Ocean dynamics generate the ENSO-related SST anomalies in the gap wind regions as the surface fluxes damp the SSTs anomalies, while the Ekman heat transport is generally in quadrature with the anomalies. The ENSO-driven warming is associated with large-scale deepening of the thermocline; with the cold thermocline water at greater depths during El Niño in the NETP, it is less likely to be vertically mixed to the surface, particularly in the gap wind regions where the thermocline is normally very close to the surface. The thermocline deepening is enhanced to the south of the Costa Rica Dome in the Papagayo region, which contributes to the local ENSO-driven SST anomalies. The NETP thermocline changes are due to coastal Kelvin waves that initiate westward-propagating Rossby waves, and possibly ocean eddies, rather than by local Ekman pumping. These findings were confirmed with regional ocean model experiments: only integrations that included interannually varying ocean boundary conditions were able to simulate the thermocline deepening and localized warming in the NETP during El Niño events; the simulation with variable surface fluxes, but boundary conditions that repeated the seasonal cycle, did not.This research was supported by
grants from the NOAA office of Global Programs and
the NSF Climate and Global Dynamics Division.2012-11-1
Madagascar corals track sea surface temperature variability in the Agulhas Current core region over the past 334 years
The Agulhas Current (AC) is the strongest western boundary current in the Southern Hemisphere and is key for weather and climate patterns, both regionally and globally. Its heat transfer into both the midlatitude South Indian Ocean and South Atlantic is of global significance. A new composite coral record (Ifaty and Tulear massive Porites corals), is linked to historical AC sea surface temperature (SST) instrumental data, showing robust correlations. The composite coral SST data start in 1660 and comprise 200 years more than the AC instrumental record. Numerical modelling exhibits that this new coral derived SST record is representative for the wider core region of the AC. AC SSTs variabilities show distinct cooling through the Little Ice Age and warming during the late 18th, 19th and 20th century, with significant decadal variability superimposed. Furthermore, the AC SSTs are teleconnected with the broad southern Indian and Atlantic Oceans, showing that the AC system is pivotal for inter-ocean heat exchange south of Africa
- …