1,057 research outputs found

    Receipt from James A. Eddy to John Wright

    Get PDF
    https://digitalcommons.salve.edu/ochre-court/1222/thumbnail.jp

    Formation of Nanophase Iron in Lunar Soil Simulant for Use in ISRU Studies

    Get PDF
    For the prospective return of humans to the Moon and the extensive amount of premonitory studies necessary, large quantities of lunar soil simulants are required, for a myriad of purposes from construction/engineering purposes all the way to medical testing of its effects from ingestion by humans. And there is only a limited and precious quantity of lunar soil available on Earth (i.e., Apollo soils) - therefore, the immediate need for lunar soil simulants. Since the Apollo era, there have been several simulants; of these JSC-1 (Johnson Space Center) and MLS-1 (Minnesota Lunar Simulant) have been the most widely used. JSC-1 was produced from glassy volcanic tuff in order to approximate lunar soil geotechnical properties; whereas, MLS-1 approximates the chemistry of Apollo 11 high-Ti soil, 10084. Stocks of both simulants are depleted, but JSC-1 has recently gone back into production. The lunar soil simulant workshop, held at Marshall Space Flight Center in January 2005, identified the need to make new simulants for the special properties of lunar soil, such as nanophase iron (np-Fe(sup 0). Hill et al. (2005, this volume) showed the important role of microscale Fe(sup 0) in microwave processing of the lunar soil simulants JSC-1 and MLS-1. Lunar soil is formed by space weathering of lunar rocks (e.g., micrometeorite impact, cosmic particle bombardment). Glass generated during micrometeorite impact cements rock and mineral fragments together to form aggregates called agglutinates, and also produces vapor that is deposited and coats soil grains. Taylor et al. (2001) showed that the relative amount of impact glass in lunar soil increases with decreasing grain size and is the most abundant component in lunar dust (less than 20 micrometer fraction). Notably, the magnetic susceptibility of lunar soil also increases with the decreasing grain size, as a function of the amount of nanophase-sized Fe(sup 0) in impact-melt generated glass. Keller et al. (1997, 1999) also discovered the presence of abundant np-Fe(sup 0) particles in the glass patinas coating most soil particles. Therefore, the correlation of glass content and magnetic susceptibility can be explained by the presence of the np-Feo particles in glass: small particles contain relatively more np-Fe(sup 0) as glass coatings because the surface area versus mass ratio of the grain size is so increased. The magnetic properties of lunar soil are important in dust mitigation on the Moon (Taylor et al. 2005). Thus material simulating this property is important for testing mitigation methods using electromagnetic field. This np- Fe(sup 0) also produces a unique energy coupling to normal microwaves, such as present in kitchen microwave ovens. Effectively, a portion of lunar soil placed in a normal 2.45 GHz oven will melt at greater than 1200 C before your tea will boil at 100 C, a startling and new discovery reported by Taylor and Meek (2004, 2005). Several methods have been investigated in attempts to make nanophase-sized Feo dispersed within silicate glass; like in the lunar glass. We have been successful in synthesizing such a product and continue to improve on our recipe. We have performed extensive experimentation on this subject to date. Ultimately it will probably be necessary to add this np-Fe(sup 0) bearing silicate glass to lunar soil stimulant, like JSC-1, to actually produce the desired magnetic and microwave coupling properties for use in appropriate ISRU experimentation

    Emerging Roles of Glycogen Synthase Kinase 3 in the Treatment of Brain Tumors

    Get PDF
    The constitutively active protein glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, acts paradoxically as a tumor suppressor in some cancers while potentiates growth in others. Deciphering what governs its actions is vital for understanding many pathological conditions, including brain cancer. What are seemingly disparate roles of GSK3 stems from the complex regulation of many cellular functions by GSK3. This review focuses on the regulation of GSK3, its role in survival, apoptosis and DNA damage, and finally its potential therapeutic impact in brain cancer. A thorough understanding of this versatile protein is critical for improving the outcome of various diseases, especially cancer

    Predictors of Dietary Supplement Use Among Adolescent Athletes

    Get PDF
    This study sought to predict the use of dietary supplements marketed to enhance athletic performance among 1,737 adolescent athletes. An anonymous, paper-and-pencil, self-report survey was administered to the participants. Grade level, participation in multiple sports, and scales representing attitudes, subjective norms, and intention were all significant predictors of current dietary supplement use. The results of this study allow for the development of more appropriate prevention and intervention strategies that can target specific groups of adolescent athletes. The authors recommend that attitudes of adolescent athletes be addressed in interventions and that salient others be included in program planning

    Graphene formation on SiC substrates

    Full text link
    Graphene layers were created on both C and Si faces of semi-insulating, on-axis, 4H- and 6H-SiC substrates. The process was performed under high vacuum (<10-4 mbar) in a commercial chemical vapor deposition SiC reactor. A method for H2 etching the on-axis sub-strates was developed to produce surface steps with heights of 0.5 nm on the Si-face and 1.0 to 1.5 nm on the C-face for each polytype. A process was developed to form graphene on the substrates immediately after H2 etching and Raman spectroscopy of these samples confirmed the formation of graphene. The morphology of the graphene is described. For both faces, the underlying substrate morphology was significantly modified during graphene formation; sur-face steps were up to 15 nm high and the uniform step morphology was sometimes lost. Mo-bilities and sheet carrier concentrations derived from Hall Effect measurements on large area (16 mm square) and small area (2 and 10 um square) samples are presented and shown to compare favorably to recent reports.Comment: European Conference on Silicon Carbide and Related Materials 2008 (ECSCRM '08), 4 pages, 4 figure

    Lessons Lived: Development and Discovery in Health Education Distance Education Programs

    Get PDF
    This article highlights three noteworthy distance education program approaches to the delivery of health education courses. Insights into The University of Alabama Masters in Health Studies, now in its second decade delivering a complete degree program via distance technologies, will be shared as well as Texas A&amp;M University's efforts at both graduate and undergraduate health education distance offerings, and lastly, the evolution of the Health Education and Promotion Network (HEPNetwork), the first profession wide opportunity for health educators to gain educational credit by distance. Each program will be discussed, followed by a thoughtful discourse on the challenges each program faced

    Effect of GaN surface treatment on Al2O3/n-GaN MOS capacitors

    Get PDF
    Citation: Hossain, T., Wei, D., Edgar, J. H., Garces, N. Y., Nepal, N., Hite, J. K., . . . Meyer H.M, III. (2015). Effect of GaN surface treatment on Al2O3/n-GaN MOS capacitors. Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics, 33(6). doi:10.1116/1.4931793The surface preparation for depositing Al2O3 for fabricating Au/Ni/Al2O3/n-GaN (0001) metal oxide semiconductor (MOS) capacitors was optimized as a step toward realization of high performance GaN MOSFETs. The GaN surface treatments studied included cleaning with piranha (H2O2:H2SO4 = 1:5), (NH4)2S, and 30% HF etches. By several metrics, the MOS capacitor with the piranha-etched GaN had the best characteristics. It had the lowest capacitance–voltage hysteresis, the smoothest Al2O3 surface as determined by atomic force microscopy (0.2 nm surface roughness), the lowest carbon concentration (∼0.78%) at the Al2O3/n-GaN interface (from x-ray photoelectron spectroscopy), and the lowest oxide-trap charge (QT = 1.6 × 1011 cm−2eV−1). Its interface trap density (Dit = 3.7 × 1012 cm−2eV−1), as measured with photon-assisted capacitance– voltage method, was the lowest from conduction band-edge to midgap

    Systems analysis of metabolism in the pathogenic trypanosomatid Leishmania major

    Get PDF
    Systems analyses have facilitated the characterization of metabolic networks of several organisms. We have reconstructed the metabolic network of Leishmania major, a poorly characterized organism that causes cutaneous leishmaniasis in mammalian hosts. This network reconstruction accounts for 560 genes, 1112 reactions, 1101 metabolites and 8 unique subcellular localizations. Using a systems-based approach, we hypothesized a comprehensive set of lethal single and double gene deletions, some of which were validated using published data with approximately 70% accuracy. Additionally, we generated hypothetical annotations to dozens of previously uncharacterized genes in the L. major genome and proposed a minimal medium for growth. We further demonstrated the utility of a network reconstruction with two proof-of-concept examples that yielded insight into robustness of the network in the presence of enzymatic inhibitors and delineation of promastigote/amastigote stage-specific metabolism. This reconstruction and the associated network analyses of L. major is the first of its kind for a protozoan. It can serve as a tool for clarifying discrepancies between data sources, generating hypotheses that can be experimentally validated and identifying ideal therapeutic targets

    Myths and Methodologies:Standardisation in human physiology research—should we control the controllables?

    Get PDF
    The premise of research in human physiology is to explore a multifaceted system whilst identifying one or a few outcomes of interest. Therefore, the control of potentially confounding variables requires careful thought regarding the extent of control and complexity of standardisation. One common factor to control prior to testing is diet, as food and fluid provision may deviate from participants’ habitual diets, yet a self‐report and replication method can be flawed by under‐reporting. Researchers may also need to consider standardisation of physical activity, whether it be through familiarisation trials, wash‐out periods, or guidance on levels of physical activity to be achieved before trials. In terms of pharmacological agents, the ethical implications of standardisation require researchers to carefully consider how medications, caffeine consumption and oral contraceptive prescriptions may affect the study. For research in females, it should be considered whether standardisation between‐ or within‐participants in regards to menstrual cycle phase is most relevant. The timing of measurements relative to various other daily events is relevant to all physiological research and so it can be important to standardise when measurements are made. This review summarises the areas of standardisation which we hope will be considered useful to anyone involved in human physiology research, including when and how one can apply standardisation to various contexts
    corecore