250 research outputs found

    Structural and functional characterisation of the fork head transcription factor-encoding gene, Hc-daf-16, from the parasitic nematode Haemonchus contortus (Strongylida)

    Get PDF
    Despite their phylogenetic diversity, parasitic nematodes share attributes of longevity and developmental arrest (=hypobiosis) with free-living nematodes at key points in their life cycles, particularly in larval stages responsible for establishing infection in the host. Insulin-like signalling plays crucial roles in the regulation of life span and arrest (=dauer formation) in the free-living nematode, Caenorhabditis elegans. Insulin-like signalling in C. elegans negatively regulates the fork head boxO (FoxO) transcription factor encoded by daf-16, which is linked to initiating a dauer-specific pattern of gene expression. Orthologues of daf-16 have been identified in several species of parasitic nematode. Although function has been demonstrated for an orthologue from the parasitic nematode Strongyloides stercoralis (Rhabditida), the functional capabilities of homologues/orthologues in bursate nematodes (Strongylida) are unknown. In the present study, we used a genomic approach to determine the structures of two complete daf-16 orthologues (designated Hc-daf-16.1 and Hc-daf-16.2) and their transcripts in the parasitic nematode Haemonchus contortus, and assessed their function(s) using C. elegans as a genetic surrogate. Unlike the multiple isoforms of Ce-DAF-16 and Ss-DAF-16, which are encoded by a single gene and produced by alternative splicing, mRNAs encoding the proteins Hc-DAF-16.1 and Hc-DAF-16.2 are transcribed from separate and distinct loci. Both orthologues are transcribed in all developmental stages and both sexes of H. contortus, and the inferred proteins (603 and 556 amino acids) each contain a characteristic, highly conserved fork head domain. In spite of distinct differences in genomic organisation compared with orthologues in C. elegans and S. stercoralis, genetic complementation studies demonstrated here that Hc-daf-16.2, but not Hc-daf-16.1, could restore daf-16 function to a C. elegans strain carrying a null mutation at this locus. These findings are consistent with previous results for S. stercoralis and demonstrate functional conservation of the daf-16b orthologue between key parasitic nematodes from two different taxonomic orders and C. elegans. We conclude from these experiments that the fork head transcription factor DAF-16 and, by inference, other insulin-like signalling elements, are conserved in H. contortus, a parasitic nematode of paramount economic importance. We demonstrate that functionality is sufficiently conserved in Hc-DAF-16.2 that it can replace Ce-DAF-16 in promoting dauer arrest in C. elegans

    Reconstruction of the insulin-like signalling pathway of Haemonchus contortus

    Get PDF
    Background: In the present study, we reconstructed the insulin/insulin-like growth factor 1 signalling (IIS) pathway for Haemonchus contortus, which is one of the most important eukaryotic pathogens of livestock worldwide and is related to the free-living nematode Caenorhabditis elegans. Methods: We curated full-length open-reading frames from assembled transcripts, defined the complement of genes that encode proteins involved in this pathway and then investigated the transcription profiles of these genes for all key developmental stages of H. contortus. Results: The core components of the IIS pathway are similar to their respective homologs in C. elegans. However, there is considerable variation in the numbers of isoforms between H. contortus and C. elegans and an absence of AKT-2 and DDL-2 homologs from H. contortus. Interestingly, DAF-16 has a single isoform in H. contortus compared with 12 in C. elegans, suggesting novel functional roles in the parasitic nematode. Some IIS proteins, such as DAF-18 and SGK-1, vary in their functional domains, indicating distinct roles from their homologs in C. elegans. Conclusions: This study paves the way for the further characterization of key signalling pathways in other socioeconomically important parasites and should help understand the complex mechanisms involved in developmental processes

    Fatty acid oxidation is essential for egg production by the parasitic flatworm Schistosoma mansoni

    Get PDF
    Schistosomes, parasitic flatworms that cause the neglected tropical disease schistosomiasis, have been considered to have an entirely carbohydrate based metabolism, with glycolysis playing a dominant role in the adult parasites. However, we have discovered a close link between mitochondrial oxygen consumption by female schistosomes and their ability to produce eggs. We show that oxygen consumption rates (OCR) and egg production are significantly diminished by pharmacologic inhibition of carnitine palmitoyl transferase 1 (CPT1), which catalyzes a rate limiting step in fatty acid β-oxidation (FAO) and by genetic loss of function of acyl CoA synthetase, which complexes with CPT1 and activates long chain FA for use in FAO, and of acyl CoA dehydrogenase, which catalyzes the first step in FAO within mitochondria. Declines in OCR and egg production correlate with changes in a network of lipid droplets within cells in a specialized reproductive organ, the vitellarium. Our data point to the importance of regulated lipid stores and FAO for the compartmentalized process of egg production in schistosomes

    Different but overlapping populations of Strongyloides stercoralis in dogs and humans-Dogs as a possible source for zoonotic strongyloidiasis

    Get PDF
    Strongyloidiasis is a much-neglected soil born helminthiasis caused by the nematode Strongyloides stercoralis. Human derived S. stercoralis can be maintained in dogs in the laboratory and this parasite has been reported to also occur in dogs in the wild. Some authors have considered strongyloidiasis a zoonotic disease while others have argued that the two hosts carry host specialized populations of S. stercoralis and that dogs play a minor role, if any, as a reservoir for zoonotic S. stercoralis infections of humans. We isolated S. stercoralis from humans and their dogs in rural villages in northern Cambodia, a region with a high incidence of strongyloidiasis, and compared the worms derived from these two host species using nuclear and mitochondrial DNA sequence polymorphisms. We found that in dogs there exist two populations of S. stercoralis, which are clearly separated from each other genetically based on the nuclear 18S rDNA, the mitochondrial cox1 locus and whole genome sequence. One population, to which the majority of the worms belong, appears to be restricted to dogs. The other population is indistinguishable from the population of S. stercoralis isolated from humans. Consistent with earlier studies, we found multiple sequence variants of the hypervariable region I of the 18 S rDNA in S. stercoralis from humans. However, comparison of mitochondrial sequences and whole genome analysis suggest that these different 18S variants do not represent multiple genetically isolated subpopulations among the worms isolated from humans. We also investigated the mode of reproduction of the free-living generations of laboratory and wild isolates of S. stercoralis. Contrary to earlier literature on S. stercoralis but similar to other species of Strongyloides, we found clear evidence of sexual reproduction. Overall, our results show that dogs carry two populations, possibly different species of Strongyloides. One population appears to be dog specific but the other one is shared with humans. This argues for the strong potential of dogs as reservoirs for zoonotic transmission of S. stercoralis to humans and suggests that in order to reduce the exposure of humans to infective S. stercoralis larvae, dogs should be treated for the infection along with their owners

    Immunization with the recombinant antigen Ss-IR induces protective immunity to infection with Strongyloides stercoralis in mice.

    Get PDF
    Human intestinal infections with the nematode Strongyloides stercoralis remain a significant problem worldwide and a vaccine would be a useful addition to the tools available to prevent and control this infection. The goal of this study was to test single antigens for their efficacy in a vaccine against S. stercoralis larvae in mice. Alum was used as the adjuvant in these studies and antigens selected for analysis were either recognized by protective human IgG (Ss-TMY-1, Ss-EAT-6, and Ss-LEC-5) or were known to be highly immunogenic in humans (Ss-NIE-1 and Ss-IR). Only mice immunized with the Ss-IR antigen demonstrated a significant decrease of approximately 80% in the survival of larval parasites in the challenge infection. Antibodies, recovered from mice with protective immunity to S. stercoralis after immunization with Ss-IR, were used to locate the antigen in the larvae. Confocal microscopy revealed that IgG from mice immunized with Ss-IR bound to the surface of the parasites and observations by electron microscopy indicated that IgG bound to granules in the glandular esophagus. Serum collected from mice immunized with Ss-IR passively transferred immunity to naïve mice. These studies demonstrate that Ss-IR, in combination with alum, induces high levels of protective immunity through an antibody dependent mechanism and may therefore be suitable for further development as a vaccine against human strongyloidiasis

    Soluble extract from the nematode Strongyloides stercoralis induces CXCR2 dependent/IL-17 independent neutrophil recruitment.

    Get PDF
    Neutrophil recruitment via CXCR2 is required for innate and adaptive protective immunity to the larvae of Strongyloides stercoralis in mice. The goal of the present study was to determine the mechanism of CXCR2-mediated neutrophil recruitment to S. stercoralis. Mice deficient in the receptor for IL-17A and IL-17F, upstream mediators of CXCR2 ligand production, were infected with S. stercoralis larvae; there was no difference in larval survival, neutrophil recruitment, or production of CXCR2 ligands compared with wild type mice. In vivo and in vitro stimulation of neutrophils with S. stercoralis soluble extract resulted in significant neutrophil recruitment. In vitro assays demonstrated that the recruitment functioned through both chemokinesis and chemotaxis, was specific for CXCR2, and was a G protein-coupled response involving tyrosine kinase and PI3K. Finally, neutrophil stimulation with S. stercoralis soluble extract induced release of the CXCR2 ligands MIP-2 and KC from neutrophils, thereby potentially enhancing neutrophil recruitment

    Systematic review of studies generating individual participant data on the efficacy of drugs for treating soil-transmitted helminthiases and the case for data-sharing

    Get PDF
    Preventive chemotherapy and transmission control (PCT) by mass drug administration is the cornerstone of the World Health Organization (WHO)’s policy to control soil-transmitted helminthiases (STHs) caused by Ascaris lumbricoides (roundworm), Trichuris trichiura (whipworm) and hookworm species (Necator americanus and Ancylostama duodenale) which affect over 1 billion people globally. Despite consensus that drug efficacies should be monitored for signs of decline that could jeopardise the effectiveness of PCT, systematic monitoring and evaluation is seldom implemented. Drug trials mostly report aggregate efficacies in groups of participants, but heterogeneities in design complicate classical meta-analyses of these data. Individual participant data (IPD) permit more detailed analysis of drug efficacies, offering increased sensitivity to identify atypical responses potentially caused by emerging drug resistance

    Morphogenesis of Strongyloides stercoralis Infective Larvae Requires the DAF-16 Ortholog FKTF-1

    Get PDF
    Based on metabolic and morphological similarities between infective third-stage larvae of parasitic nematodes and dauer larvae of Caenorhabditis elegans, it is hypothesized that similar genetic mechanisms control the development of these forms. In the parasite Strongyloides stercoralis, FKTF-1 is an ortholog of DAF-16, a forkhead transcription factor that regulates dauer larval development in C. elegans. Using transgenesis, we investigated the role of FKTF-1 in S. stercoralis' infective larval development. In first-stage larvae, GFP-tagged recombinant FKTF-1b localizes to the pharynx and hypodermis, tissues remodeled in infective larvae. Activating and inactivating mutations at predicted AKT phosphorylation sites on FKTF-1b give constitutive cytoplasmic and nuclear localization of the protein, respectively, indicating that its post-translational regulation is similar to other FOXO-class transcription factors. Mutant constructs designed to interfere with endogenous FKTF-1b function altered the intestinal and pharyngeal development of the larvae and resulted in some transgenic larvae failing to arrest in the infective stage. Our findings indicate that FKTF-1b is required for proper morphogenesis of S. stercoralis infective larvae and support the overall hypothesis of similar regulation of dauer development in C. elegans and the formation of infective larvae in parasitic nematodes

    Microarray-Based Analysis of Differential Gene Expression between Infective and Noninfective Larvae of Strongyloides stercoralis

    Get PDF
    Strongyloides stercoralis is a soil-transmitted helminth that affects an estimated 30–100 million people worldwide. Chronically infected persons who are exposed to corticosteroids can develop disseminated disease, which carries a high mortality (87–100%) if untreated. Despite this, little is known about the fundamental biology of this parasite, including the features that enable infection. We developed the first DNA microarray for this parasite and used it to compare infective third-stage larvae (L3i) with non-infective first stage larvae (L1). Using this method, we identified 935 differentially expressed genes. Functional characterization of these genes revealed L3i biased expression of heat shock proteins and genes with products that have previously been shown to be immunoreactive in infected humans. Genes putatively involved in transcription were found to have L1 biased expression. Potential chemotherapeutic and vaccine targets such as far-1, ucr 2.1 and hsp-90 were identified for further study
    • …
    corecore