1,435 research outputs found

    Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR

    Get PDF
    Quantitative real-time PCR (qPCR) is a commonly used validation tool for confirming gene expression results obtained from microarray analysis; however, microarray and qPCR data often result in disagreement. The current study assesses factors contributing to the correlation between these methods in five separate experiments employing two-color 60-mer oligonucleotide microarrays and qPCR using SYBR green. Overall, significant correlation was observed between microarray and qPCR results (ρ=0.708, p<0.0001, n=277) using these platforms. The contribution of factors including up- vs. down-regulation, spot intensity, ρ-value, fold-change, cycle threshold (C(t)), array averaging, tissue type, and tissue preparation was assessed. Filtering of microarray data for measures of quality (fold-change and ρ-value) proves to be the most critical factor, with significant correlations of ρ>0.80 consistently observed when quality scores are applied

    A Health Impact Assessment of a Proposed Bill to Decrease Speed Limits on Local Roads in Massachusetts (U.S.A.)

    Get PDF
    Decreasing traffic speeds increases the amount of time drivers have to react to road hazards, potentially averting collisions, and makes crashes that do happen less severe. Boston’s regional planning agency, the Metropolitan Area Planning Council (MAPC), in partnership with the Massachusetts Department of Public Health (MDPH), conducted a Health Impact Assessment (HIA) that examined the potential health impacts of a proposed bill in the state legislature to lower the default speed limits on local roads from 30 miles per hour (mph) to 25 mph. The aim was to reduce vehicle speeds on local roads to a limit that is safer for pedestrians, cyclists, and children. The passage of this proposed legislation could have had far-reaching and potentially important public health impacts. Lower default speed limits may prevent around 18 fatalities and 1200 serious injuries to motorists, cyclists and pedestrians each year, as well as promote active transportation by making local roads feel more hospitable to cyclists and pedestrians. While a lower speed limit would increase congestion and slightly worsen air quality, the benefits outweigh the costs from both a health and economic perspective and would save the state approximately $62 million annually from prevented fatalities and injuries

    Maximizing alcohol yields from wheat and maize and their co-products for distilling or bioethanol production

    Get PDF
    The key to optimizing alcohol production from cereals is a full understanding of the physiology and processing characteristics of different cereals. This study examined the maximum alcohol yields that can be obtained from wheat and maize using different processing technologies. Lower processing temperatures (85°C) resulted in high alcohol yields from wheat (a temperate crop), whereas higher processing temperatures (142°C) gave maximum alcohol yields from maize (a tropical crop). Similar trends were also observed when the spent grains from these cereals were processed using commercial enzymes. Mill settings were additional factors in influencing alcohol production. Wheat has the potential to produce higher alcohol yields when compared with maize, when residual biomass (i.e. spent grains) saccharification using selected commercial enzymes is taken into account. While this approach is not applicable for the Scotch whisky industry owing to strict legislation forbidding the use of exogenous enzymes, this is pertinent for bioethanol production to increase the alcohol yield obtained from both starch and lignocellulosic components of whole cereal grains. Wheat and maize processing temperatures and the use of processing aids are of potential economic benefit to bioethanol producers and to beverage alcohol producers seeking to understand the factors influencing the processing properties of different cereals

    Re-imagining the data collection and analysis research process by proposing a rapid qualitative data collection and analytic roadmap applied to the dynamic context of precision medicine

    Get PDF
    Our implementation science study focuses on implementing a new way of practice and offers methodological specificity about how to rapidly investigate an individually tailored precision medicine intervention. A qualitative study advancing a new methodology for speedily identifying barriers and enablers to implementation in the context of childhood cancer. Data were collected through rapid ethnography, coded using the Consolidated Framework for Implementation Research, and analysed by Sentiment Analysis. Thirty-eight data collection events occurred during 14 multidisciplinary tumour board meetings, 14 curation meetings, and 10 informal conversations. Sentiment Analysis distilled Consolidated Framework for Implementation Research codes to reveal key barriers and enablers to implementation. A traffic light labelling system has been used to present levels of positivity and negativity (green for strong enablers and red for strong barriers), highlighting levels of concern regarding implementation. Within the intervention design characteristics, “Adaptability” was the strongest enabler and “Design quality and safety” the strongest barrier. Among the contextual factors: “Networks and communication” were the strongest enabler, and “Available resources” were the strongest barrier. Overall, there was a higher percentage of negative sentiment towards intervention design characteristics and contextual factors than positive sentiment, while more concerns were raised about intervention design factors than contextual factors. This study offers a rapid qualitative data collection and analytic methodological roadmap for establishing barriers and enablers to a paediatric precision medicine intervention

    Unlocking the role of a genital herpesvirus, otarine herpesvirus 1, in California sea lion cervical cancer

    Get PDF
    This research was funded by the Geoffrey Hughes Research Fellowship and The Marine Mammal Center.Urogenital carcinoma in California sea lions (Zalophus californianus) is the most common cancer of marine mammals. Primary tumors occur in the cervix, vagina, penis, or prepuce and aggressively metastasize resulting in death. This cancer has been strongly associated with a sexually transmitted herpesvirus, otarine herpesvirus 1 (OtHV1), but the virus has been detected in genital tracts of sea lions without cancer and a causative link has not been established. To determine if OtHV1 has a role in causing urogenital carcinoma we sequenced the viral genome, quantified viral load from cervical tissue from sea lions with (n = 95) and without (n = 163) urogenital carcinoma, and measured viral mRNA expression using in situ mRNA hybridization (BasescopeÂź) to quantify and identify the location of OtHV1 mRNA expression. Of the 95 sea lions diagnosed with urogenital carcinoma, 100% were qPCR positive for OtHV1, and 36% of the sea lions with a normal cervix were positive for the virus. The non-cancer OtHV1 positive cases had significantly lower viral loads in their cervix compared to the cervices from sea lions with urogenital carcinoma. The OtHV1 genome had several genes similar to the known oncogenes, and RNA in situ hybridization demonstrated high OtHV1 mRNA expression within the carcinoma lesions but not in normal cervical epithelium. The high viral loads, high mRNA expression of OtHV1 in the cervical tumors, and the presence of suspected OtHV1 oncogenes support the hypothesis that OtHV1 plays a significant role in the development of sea lion urogenital carcinoma.Publisher PDFPeer reviewe

    Liver genomic responses to ciguatoxin: evidence for activation of Phase I and Phase II detoxification pathways following an acute hypothermic response in mice

    Get PDF
    Ciguatoxins (CTX) are polyether neurotoxins that target voltage-gated sodium channels and are responsible for ciguatera, the most common fish-borne food poisoning in humans. This study characterizes the global transcriptional response of mouse liver to a symptomatic dose (0.26 ng/g) of the highly potent Pacific ciguatoxin-1 (P-CTX-1). At 1 h post-exposure 2.4% of features on a 44K whole genome array were differentially expressed (p ≀ 0.0001), increasing to 5.2% at 4 h and decreasing to 1.4% by 24 h post-CTX exposure. Data were filtered (|fold change| ≄ 1.5 and p ≀ 0.0001 in at least one time point) and a trend set of 1550 genes were used for further analysis. Early gene expression was likely influenced prominently by an acute 4°C decline in core body temperature by 1 h, which resolved by 8 h following exposure. An initial downregulation of 32 different solute carriers, many involved in sodium transport, was observed. Differential gene expression in pathways involving eicosanoid biosynthesis and cholesterol homeostasis was also noted. Cytochrome P450s (Cyps) were of particular interest due to their role in xenobiotic metabolism. Twenty-seven genes, mostly members of Cyp2 and Cyp4 families, showed significant changes in expression. Many Cyps underwent an initial downregulation at 1 h but were quickly and strongly upregulated at 4 and 24 h post-exposure. In addition to Cyps, increases in several glutathione S-transferases were observed, an indication that both phase I and phase II metabolic reactions are involved in the hepatic response to CTX in mice

    Physical and chemical characteristics of feedlot pen substrate bedded with woodchip under wet climatic conditions

    Get PDF
    Wet winter conditions can create animal welfare issues in feedlots if the pen surface becomes a deep, wet, penetrable substrate. Feedlot pens with a clay and gravel base (N = 30) bedded with 150 mm (W15) and 300 mm (W30) depth of woodchips were compared to a control treatment with no bedding over a 109-day feeding period, while irrigated to supplement natural rainfall. The pad substrate was measured for variables which would affect cattle comfort and value of the substrate for composting. The penetrable depth of control pens was higher than both woodchip-bedded treatments from week 2, and increased until the end of the experiment. Meanwhile these scores were steady for W30 throughout the experiment, and increased for W15 only after week 10. Moisture content of the pad was higher throughout the experiment in the control pens than in the woodchip-bedded pens. In the control pens, the force required to pull a cattle leg analogue out of the pen substrate was three times that required in woodchip-bedded treatments. The W15 treatment increased C : N in the substrate to the upper limit of suitability for composting, and in W30, C : N was too high for composting after a 109-day feeding period. Overall, providing feedlot cattle with 150 or 300 mm of woodchip bedding during a 109-day feeding period improved the condition of the pad substrate for cattle comfort by reducing penetrable depth and moisture content of the substrate surface stratum, but composting value decreased in W30 over this feeding period duration

    Management of Platelet-Directed Pharmacotherapy in Patients With Atherosclerotic Coronary Artery Disease Undergoing Elective Endoscopic Gastrointestinal Procedures

    Get PDF
    The periprocedural management of patients with atherosclerotic coronary heart disease, including those who have heart disease and those who are undergoing percutaneous coronary intervention and stent placement who might require temporary interruption of platelet-directed pharmacotherapy for the purpose of an elective endoscopic gastrointestinal procedure, is a common clinical scenario in daily practice. Herein, we summarize the available information that can be employed for making management decisions and provide general guidance for risk assessment
    • 

    corecore