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Abstract 10 

The key to optimising alcohol production from cereals is a full understanding the physiology and 11 
processing characteristics of different cereals. This study examined the maximum alcohol yields that 12 
can be obtained from wheat and maize using different processing technologies. Lower processing 13 
temperatures (85oC) resulted in high alcohol yields from wheat (a temperate crop), whereas higher 14 
processing temperatures (142oC) gave maximum alcohol yields from maize (a tropical crop). Similar 15 
trends were also observed when the spent grains from these cereals were subjected to cellulolysis 16 
using commercial enzymes.  Mill settings were additional factors in influencing alcohol production. 17 
Wheat has the potential to produce higher alcohol yields when compared with maize, when residual 18 
biomass (i.e. spent grains) saccharification using selected commercial enzymes is taken into account. 19 
While this is approach is not applicable for the Scotch whisky industry due to strict legislation 20 
forbidding use of exogenous enzymes, this is pertinent for bioethanol production  to increase the 21 
alcohol yield obtained from both starch and lignocellulosic components of whole cereal grains. 22 
Wheat and maize processing temperatures and the use of processing aids are of potential economic 23 
benefit to bioethanol producers and to beverage alcohol producers seeking to understand the 24 
factors influencing the processing properties of different cereals. 25 
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Introduction 32 

The production of grain whisky has many parallels with the technology that is used in some 33 

bioethanol distilleries.  Both products can be produced from starch-based substrates originating 34 

from cereals such as wheat and maize (corn).   Many other cereals can be used for both bioethanol 35 

and whisky production and at the Scotch Whisky Research Institute (SWRI) work has been carried 36 

out on a range of different cereals such as wheat, maize, sorghum and millet to show how their 37 

properties can be used to optimize alcohol yield (1; 2).  Under the legal definition of Scotch whisky 38 

(3), the use of commercial enzymes or other additives to increase alcohol yield and process 39 

efficiency are strictly forbidden, and process improvements must be derived from a better 40 

understanding of the physiological and processing characteristics of different cereals. However, 41 

distillers are also interested in the production of neutral spirits (Grain Neutral Spirit (GNS)), which is 42 

used for non-Scotch whisky products such as vodka and gin, which are not subject to these 43 

constraints.  Similarly, the production of bioethanol is free from these requirements and a much 44 

wider range of options of both technologies and substrates are available, so that bioethanol 45 

producers can use many suitable raw materials and process aids for different alcohol production 46 

processes. In the longer term, there is interest from Scotch whisky distillers in evaluating the 47 

potential of alternative cereals and residual plant materials or the co-products deriving from them 48 

for additional production streams, such as biogas production, which may also be relevant to 49 

bioethanol production (4; 5).  Since such treatment of co-products such as spent (or dark) grains 50 

(distillers dark grains with solubles (DDGS)) occurs after they are removed from the Scotch whisky 51 

production process, they can be further processed without restrictions, within the requirements of 52 

the end-user market for these co-products, which is primarily for animal feeds, but could also 53 

potentially be used for bioethanol production. 54 

Bioethanol is derived from the microbial fermentation of biomass to produce fuel alcohol (6), which 55 

is chemically identical to synthetically produced ethanol by the petrochemical industry. Recently, 56 
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emphasis has been placed on partial or total replacement of energy derived from fossil fuel to 57 

bioethanol derived from plant materials (7) and global production is dominated by processes using 58 

maize in USA and sugarcane in Brazil (8; 9). Ethical concerns are raised when bioethanol derived 59 

from cereals (wheat, corn, sorghum, millet) and tubers (such as cassava, yam and potato) leads to 60 

direct conflict with food production (10; 11; 12). In order for a biofuel to be sustainable it should 61 

have a net energy gain, provide environmental benefits, be economically competitive and be 62 

capable of being produced on large scale without disrupting agricultural food crops (13). It is also 63 

essential that a sustainable bioethanol process will not upset the balance between the greenhouse 64 

gas emissions generated as the carbon released by the burning of plant derived fuels, and those 65 

which can be captured by growing plants (i.e. carbon neutral). The production of biofuels from more 66 

diverse feedstocks, for example, based on co-products such as cellulosic agricultural residues and 67 

brewer’s and distiller’s spent grains will eventually offer more sustainable alternatives to cereals and 68 

other food crops, and should help to ameliorate food versus fuel arguments (14). Commercial scale 69 

production of cellulosic ethanol is now a reality with, for example, Beta Renewables plant now 70 

operational in Italy, and several US plants on stream in 2014 (Lane, 2013). It is estimated that other 71 

large scale production plants capable of producing 50,000 – 150,000 tonnes of cellulosic ethanol will 72 

be built in 2013/14 (15). In Germany an estimated 22 million tonnes of straw could be used to meet 73 

around 25% of Germany’s current petrol requirements (15). In the UK, nine bioethanol plants that 74 

are likely to use wheat as raw material have been planned, each with a potential total capacity of 75 

approximately 2 x 106 tonne bio-ethanol per annum (16; 17). There are at present three bio-ethanol 76 

plants in the UK – ‘British Sugar’ in Wissington, ‘Ensus’ (now owned by Crop Energies) in Teeside and 77 

‘Vivergo’ in Hull. The latter two plants each can potentially produce 400 million litres of bioethanol 78 

per annum (18). Although previous studies on the feasibility of bioethanol in the UK concluded that 79 

production costs were uncompetitive compared with petrol (17), the economics have been gradually 80 

improving over the last two decades with the use of improved commercial enzymes to liberate 81 

fermentable sugars.  82 
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Agu et al. (2) studied the effects of starch liberation and breakdown conditions and observed that 83 

wheat can produce a significantly higher spirit yield when processed at a lower temperature of 85oC, 84 

compared with the higher cooking temperatures required for other cereals such as maize which will 85 

normally produce its maximum alcohol yield when processed at much higher temperatures (typically 86 

142oC – 145°C).  This observation was in agreement with other studies focussed on bioethanol 87 

production (19; 20; 21). These studies confirmed that the processing procedure should be tailored to 88 

the cereal being used. The lower processing temperature of wheat also lowered the residue viscosity 89 

which causes problems in downstream recovery of the distillery co-products (2). The higher viscosity 90 

of wheat is due, in part, to the presence of high levels of pentosan (8% w/w) compared to lower 91 

levels (3% w/w) in maize, sorghum and millet (Palmer, 1989). In particular, pentosans such as 92 

arabinoxylans and other polymers such as β-glucans are known to cause processing problems (22; 93 

23; 24; 25; 26; 27).  94 

The present study was undertaken to investigate the effects of process conditions and enzyme 95 

processing aids on maximising alcohol yields from wheat and maize starch and lignocellulose (in the 96 

form of spent grains). 97 

Materials and Methods 98 

Cereal samples 99 

Samples of cereals (wheat and maize) were obtained from two sources  (Ii) soft, low nitrogen wheat 100 

(cv Viscount) from a trial site producing wheat for assessment for Scotch grain whisky production; (II)  101 

a commercial yellow maize sample (variety not specified) obtained from a Scotch whisky grain 102 

distillery. 103 

Alcohol yield from wheat and maize flours (142oC process) 104 

The following procedure based is on the work of Brosnan et al (28) and described fully by Agu et al 105 

(1) and simulates the production process in a “typical” Scotch whisky grain distillery. Cereal flour 106 
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(30g), obtained by milling the grains in a Buhler Miag disc mill set at either 2 (0.2mm), or 11 (1.1mm) 107 

was transferred into a stainless steel mashing beaker and slurried with water (81ml), and 25µLof 108 

Termamyl 120L Type L (a bacterial α-amylase supplied by Novozymes France S.A.) was added. This 109 

was slowly heated up to 85oC (temperature rise 2oC /min) in a water bath, before pressure cooking 110 

in an autoclave, temperature programmed with a maximum temperature of 142oC for 15 minutes. 111 

The cooked slurry was cooled to 85oC and given a second treatment with Termamyl (25µL) for 30 112 

min to prevent starch retrogradation. The mash was then transferred to a water bath at 65oC and 113 

mashed for 1 hour with a predetermined amount of high enzyme grain distilling malt grist (Miag mill 114 

setting 2 (0.2mm) and 11 (1.1mm)), equivalent to a malt inclusion rate of 20% dry weight basis (dwb) 115 

to 80% wheat. After cooling to room temperature, the mash was pitched with distiller’s yeast 116 

(Saccharomyces cerevisiae ‘M’ type, supplied by Kerry Ingredients & Flavours) at a pitching rate of 117 

0.4 (w/w) pressed yeast, transferred to a fermentation vessel and the weight adjusted to 250g with 118 

water. The mash was then fermented at 30oC for 68 hours and distilled to collect the alcohol. The 119 

alcohol yield was determined from the alcohol strength of the distillate, which was measured using 120 

an Anton Paar 5000 density meter. The alcohol yield was quoted as litres of alcohol per tonne (LA/t) 121 

on a dry weight basis (dwb). 122 

Alcohol yield from wheat and maize flours (85oC process) 123 

The procedure is similar to that described above except that the pressure cooking step where the 124 

slurry was transferred to the autoclave, as well as the second treatment with Termamyl was 125 

bypassed. 126 

Alcohol yield from wheat and maize spent grains (SG) (142oC process) 127 

The procedure was similar to that described above for the cereal flour, except that the cereal spent 128 

grains (30g), were slurried with acidified water (0.005M H2SO4) (130mL) rather than distilled water, 129 

and 25µL of Termamyl 120L Type L (a bacterial α-amylase supplied by Novozymes France S.A.) and 130 
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heated up to 85oC before pressure cooking in an autoclave at 142oC for 15 minutes. The cooked 131 

slurry was transferred to a 85oC water bath and given a second treatment with Termamyl (25µL) for 132 

30 min to prevent starch retrogradation, after which the mash was then transferred to a water bath 133 

at 65oC and incubate for 1 hour with the addition of 25µL each of the commercial enzymes 134 

Bioglucanase ME 250, Bioprotease NL 100 and Promalt 4TR (supplied by Kerry Bioscience Ltd).  The 135 

dose rate for all the enzymes is shown in Table 1. After cooling to room temperature, the mash was 136 

pitched with distillers yeast and then fermented as described earlier. The alcohol yield was also 137 

determined from alcohol strength of the distillate as described above.  138 

Alcohol yield from wheat or maize spent grains (SG) using cellulosic enzymes  139 

The alcohol yield from spent grains using cellulosic enzymes is essentially as described for the 140 

alcohol yield from milled cereal spent grains except that the commercial enzymes Bioglucanase ME 141 

250, Bioprotease NL 100 and Promalt 4TR were replaced with Cellic HTech and Cellic CTec (cellulosic 142 

and xylan hydrolysing enzymes, supplied by Novozymes France S.A.) and the mashing time was 143 

extended overnight to 24 hours. The effect of the addition of the commercial enzymes at different 144 

stages, before (upstream) and after (downstream) cooking, was also investigated using maize spent 145 

grains.  146 

Rheological properties of the spent grains using Rapid Visco-Analysis (RVA) 147 

The physiological properties of the spent grains were studied using a Newport Scientific Rapid Visco 148 

Analyser (RVA) instrument supplied by Calibre Control. The Rapid Visco-Analyser is a rotational, 149 

continuously recording viscometer, with heating, cooling and variable shear capabilities, specifically 150 

configured for starch-based materials. The aim was to confirm that limited or no starch was present 151 

in the spent grains, and the alcohol yield was obtained from the spent grains. Here, a slurry of milled 152 

cereal spent grain (approximately 3.0g spent grain and a measured amount of water or acid total 153 
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weight 28g) with water or 0.005M sulphuric acid (H2SO4) was processed in the RVA analyser using a 154 

programme designed for un-malted cereals (29; 1). 155 

Results and Discussion 156 

Results shown in Tables 2 and 3 verify the precision and the robustness of a high temperature 157 

pressure cook for the determination of alcohol yield from cereals. The results presented in Tables 2 158 

and 3, were obtained when the Miag mill was set at 2 (0.2mm) to produce finely milled flour from 159 

the cereals. Table 2 shows the results obtained when wheat and maize were processed at the higher 160 

temperature of 142oC. This represents the traditional, high temperature process used for grain 161 

whisky production. Table 3 shows the results obtained when the same wheat and maize samples 162 

were processed at a lower temperature of 85oC which represents a potential way of reducing the 163 

energy requirement for the process. Alcohol yields obtained from each of the cereals were 164 

reproducible whether the cereals were processed at either 142oC or 85oC, and confirm the reliability 165 

and robustness of the method.  166 

When both cereal types were processed at the higher temperature of 142oC, wheat gave a much 167 

lower alcohol yield compared with maize. The differential of at least 15 litres alcohol per tonne is 168 

fairly typical for wheat and maize. On the other hand, when both cereal types were processed at the 169 

lower temperature of 85oC, maize gave a much lower alcohol yield than wheat. This is because maize 170 

requires higher temperatures than wheat to fully gelatinise the starch (1; 30). These results are 171 

consistent with observations by other researchers (19; 20; 21). In order to establish the maximum 172 

extractable alcohol yield potential from wheat and maize, the spent grains (after initial processing of 173 

the cereal flours) were re-processed using various commercial enzyme preparations (Bioglucanase 174 

ME 250, Bioprotease NL 100 and Promalt 4TR). Table 4 shows alcohol yields obtained from the spent 175 

grains when re-processed at temperatures of 142oC or 85oC. The results showed that maize spent 176 

grains yielded more alcohol than wheat spent grain when they were processed at 142oC in the 177 

presence of the enzyme mixture. In contrast, at the lower temperature wheat spent grains gave a 178 
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much higher alcohol yield (84 litres of alcohol /tonne), almost 5 orders of magnitude, compared with 179 

the maize spent grains. This observation is important because it shows that the additional substrate 180 

necessary to generate the increased alcohol yield from wheat and maize is present in the spent 181 

grains, although the maize spent grains contain much less available substrate than wheat at 85°C.   182 

When the total alcohol yield from maize flour and spent grains processed at 142°C were combined, 183 

the overall alcohol yield was much higher than that for the wheat flour and spent grains (Figure 1), 184 

by about 24 litres of alcohol per tonne.  This would suggest that the high temperature has released 185 

the starch more efficiently from the maize kernel (endosperm) reflecting the generally higher starch 186 

content of maize. It is well known that maize requires more vigorous processing conditions for 187 

optimum performance in the distilling industry, while wheat needs less severe conditions to 188 

efficiently extract and solubilise the starch. Again, as well as its starch having higher gelatinization 189 

temperature compared with wheat, maize can be prone to developing resistant starch during 190 

processing. In contrast, the gelatinization temperature of wheat starch is much lower (30; 1; 2). 191 

The opposite trend was seen at the lower processing temperature (85°C), for wheat yielded about 192 

80 litres of alcohol per tonne more than for maize (see Figure 1). The difference between the 193 

relative contribution of the components of the wheat and maize spent grains (about 70 litres of 194 

alcohol per tonne) accounted for a large proportion of the differential between the combined 195 

alcohol yields of the flour and spent grains components. This shows that at the lower temperature of 196 

85°C wheat has a bigger ‘untapped’ substrate in the spent grains (e.g. as cell wall materials), 197 

compared with maize. In wheat these can be released at the lower temperature by the combination 198 

of enzymes that were used. The lower temperature process would also be expected to produce 199 

fewer Maillard reaction products, which are known to significantly reduce alcohol yield. Therefore, 200 

there is additional potential for wheat to produce more alcohol if the processing conditions are 201 

adjusted to take account of both flour and spent grains. This is an important observation because it 202 

shows that during “normal” processing of wheat flour, materials residing in the spent grains were 203 
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limiting alcohol production. Such materials may also be responsible for higher residual viscosities 204 

found when processing wheat compared with maize (1; 2; 31). When the spent grains were re-205 

processed using commercial enzyme preparations at 85oC, over 84 LA/t (dry basis) of extra alcohol 206 

yield was obtained, which indicates that wheat spent grains have  potential for bioconversion to 207 

bioethanol. We additionally investigated the effects of using acidified process liquor and adding 208 

enzymes at different stages. The results in Table 5 (for maize spent grains) show that the effect of 209 

adjusting the process liquor to give a low acid concentration (0.005M H2SO4) gave higher alcohol 210 

yields from spent grains when the enzymes were added at the downstream process (after cooking) 211 

rather than upstream process (before cooking). The higher acid concentration (0.05M H2SO4) was 212 

less effective in this regard 213 

Particle size of milled cereal samples also influenced subsequent alcohol yields. The results discussed 214 

above were obtained when the ‘fine’ Miag mill setting 2 (0.2mm) was used to give flours with small 215 

particle sizes. However, in many industrial processes, grains are bruised or ‘cracked’ rather than 216 

finely hammer milled. Bruised grains will produce very coarse grists, depending on the mill settings.  217 

We evaluated alcohol yields from coarse (1.1mm Miag mill setting) versus finely milled (0.2mm) 218 

wheat and maize and the results are shown in Table 6. Average alcohol yields obtained from coarse 219 

wheat and maize grist were higher than those obtained for the fine flour when both cereal types 220 

were processed at the higher temperature of 142oC. The higher alcohol yields from coarse-ground 221 

wheat or maize did lead to lower residual alcohol recoverable from the respective spent grains. A 222 

similar effect was also found when the cereals were processed at 85oC. Coarse milling is preferred in 223 

industrial bioprocesses to avoid the problem of “balling” when the cereal is slurried prior to cooking 224 

in the distillery. This phenomenon can reduce the hydration of the starch and prevent it from being 225 

released properly. Whilst, under ideal conditions, fine milling would result in larger surface areas to 226 

provide easier access to enzymes, in practice some potentially fermentable material would be lost 227 

through Maillard reactions during the cooking process. In contrast, the smaller surface area provided 228 

by coarse milling may limit  loss of sugars and amino acids  by Maillard reactions, and at the same 229 
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time release gelatinized starch for enzymolysis during the mashing process to improve yeast 230 

fermentation performance. 231 

It was important to establish  that alcohol  obtained from  spent grains of processed wheat and 232 

maize  was not produced from residual starch To confirm this, pasting properties of the spent grains 233 

were analysed using a rapid visco-analyser (RVA) using  0.005M H2SO4 which would release some 234 

fermentable non-starch polysaccharides (31). The results obtained for maize spent grains are shown 235 

in Figure 2 and Figure 3 for wheat spent grains. Both RVA profiles show that the peak and final 236 

viscosities were effectively zero, indicating the absence of starchy materials after processing. These 237 

results confirm that the additional alcohol yields obtained from the cereal spent grains emanated 238 

from lignocellulosic-derived sugars following pretreatment using dilute acids and hydrolysis with 239 

cellulolytic enzymes  240 

Conclusions 241 

This investigation has highlighted that understanding the physicochemical properties of different 242 

cereals used in industrial processes is the key in optimising alcohol yields, both from starch in the 243 

grains and lignocellulose in the spent grains A relatively low processing temperature (85°C) was 244 

found to be sufficient to obtain a high alcohol yield from wheat (a temperate crop), while a higher 245 

processing temperature was required to produce optimum yields from maize (a tropical crop). The 246 

study further showed that cereal mill settings influenced alcohol yields, which is pertinent for both 247 

potable spirits such as Scotch whisky as well as bioethanol. When the spent grains from these 248 

cereals were processed using commercial enzymes at the higher and lower temperatures, there 249 

were significant differences between wheat and maize. When the residual lignocellulosic material in 250 

spent grains is taken into account, then wheat has the potential to a produce a higher alcohol yield 251 

compared with maize. However, this necessitates wheat spent grains being treated under more 252 

vigorous processing conditions, including acid pretreatment and hydrolysis using commercial 253 

enzymes. This is currently prohibited for Scotch whisky production but co-products such as spent 254 
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grains  could be re-processed into neutral spirits or bioethanol  that are not directed at the Scotch 255 

whisky market. The bioethanol industry is not faced with such restrictions and our findings may 256 

prove beneficial with regard to maximizing alcohol yields from whole cereals when correct mill 257 

settings, processing temperatures and enzymes are adequately combined. 258 
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Table 1 341 
    342 
Commercial enzyme preparations and dose rate used in this study 343 
 344 

Commercial enzyme Type Supplier Dose rate  
Termamyl 120L Heat-stable α-amylase Novozymes France S.A. 25 µL 
Promalt 4TR α-amylase Kerry Bioscience Ltd 25 µL 
Bioprotease N100L Proteolytic enzyme Kerry Bioscience Ltd 25 µL 
Bioglucanase ME 250 Endo-beta glucanase Kerry Bioscience Ltd 25 µL 
Cellic Htech Cellulase Complex Novozymes Denmark  25 µL 
Cellic Ctec Endoxylanase Novozymes Denmark. 25 µL 

 345 
 346 
Table 2  347 
 348 
 Alcohol yield results of wheat cooked at 142oC - High Temperature (HT) (Miag mill setting 2) 349 
 350 

Wheat (cv Viscount) / 
Maize (unspecified variety) 

Weight of sample 
flour 

Alcohol yield (LA/t) 
dry 

Average alcohol 
yield (LA/t) dry 

Wheat 1 29.9999 448.71  
Wheat 2 30.0000 449.39  
Wheat 3 29.9998 448.09  
Wheat 4 29.9999 445.03  
Wheat  447.81 

Maize 1 30.0003 463.08  
Maize 2 29.9998 465.49  
Maize 3 30.0003 464.86  
Maize 4 29.9998 463.21  
Maize 5 29.9996 461.67  
Maize  463.66 

 351 

 352 

Table 3 353 
  354 
Alcohol yield results of wheat cooked at 85oC - Low Temperature (LT) (Miag mill setting 2) 355 
 356 

Wheat (cv Viscount) / 
Maize (unspecified 

variety) 

Weight of sample 
flour 

Alcohol yield (LA/t) dry Average alcohol yield 
(LA/t) dry 

Wheat 1 29.9999 459.13  
Wheat 2 29.9996 454.32  
Wheat 3 30.0000 459.74  
Wheat  457.73 

Maize 1 30.0000 443.03  
Maize 2 30.0003 441.06  
Maize 3 30.0003 441.43  
Maize 4 29.9999 441.06  
Maize  441.65 
 357 
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Table 6 358 
  359 
Alcohol yield (LA/t) dry obtained from spent grains at different processing temperatures (142°C and 360 
85°C) 361 
 362 

 Alcohol yield (LA/t) dry 
 142oC 85oC 
Wheat spent grains 36.13 83.93 
Maize spent grains 43.60 17.60 

 363 

 364 

Table 7 365 
 366 
 Effect of adding 0.005M and 0.05M Sulphuric Acid (H2SO4) at different stages of stage of enzyme 367 
addition on the alcohol yield (LA/t) from maize spent grains. (Pre-cooking = upsteam; Post cooking 368 
=downstream) 369 
 370 

Stage of Enzyme Addition Weight of spent 
grain sample (g) 

Acid concentration Alcohol yield (LA/t) 
dry 

Upstream 29.9999 0.005M H2SO4 8.33 
Downstream 30.0000 0.005M H2SO4 23.53 
Upstream and downstream 30.0002 0.005M H2SO4 18.53 
Upstream 30.0000 0.05M H2SO4 0.00 
Downstream 30.0003 0.05M H2SO4 1.53 

 371 

 372 

Table 8  373 
 374 
Alcohol  yield (LA/t) dry obtained from wheat and maize flour and spent grains at different cook 375 
temperatures and a coarse mill setting (Miag setting 1.1 mm) 376 
 377 

 Alcohol yield (LA/tonne) dry Alcohol yield (LA/tonne) dry 
142oC cooking temperature 85oC cooking temperature 

Sample Fraction Flour Spent grain Total Flour Spent grain Total 
Wheat 460.11 15.13 475.24 448.98 11.67 460.65 
Maize 474.05 16.27 490.32 429.73 8.20 437.93 

 378 

379 
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 380 
 381 
Figure 1 382 
  383 
Combined spirit yields obtained from wheat and maize flours and respective spent grains (Miag mill 384 
setting 0.2mm) processed at 142°C and 85°C   385 

386 

17 
 



 

 387 
 388 
Figure 2  389 
 390 
RVA pasting profile of maize spent grain using water or 0.005M H2SO4 as process liquor 391 

392 
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 393 
 394 
Figure 3  395 
 396 
RVA pasting profile of wheat spent grain using water or 0.005M H2SO4 as process liquor 397 

 398 

 399 
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