47 research outputs found

    State of the art of nonthermal and thermal processing for inactivation of micro-organisms

    Get PDF
    peer-reviewedDespite the constant development of novel thermal and nonthermal technologies, knowledge on the mechanisms of microbial inactivation is still very limited. Technologies such as high pressure, ultraviolet light, pulsed light, ozone, power ultrasound and cold plasma (advanced oxidation processes) have shown promising results for inactivation of micro-organisms. The efficacy of inactivation is greatly enhanced by combination of conventional (thermal) with nonthermal, or nonthermal with another nonthermal technique. The key advantages offered by nonthermal processes in combination with sublethal mild temperature (<60°C) can inactivate micro-organisms synergistically. Microbial cells, when subjected to environmental stress, can be either injured or killed. In some cases, cells are believed to be inactivated, but may only be sublethally injured leading to their recovery or, if the injury is lethal, to cell death. It is of major concern when micro-organisms adapt to stress during processing. If the cells adapt to a certain stress, it is associated with enhanced protection against other subsequent stresses. One of the most striking problems during inactivation of micro-organisms is spores. They are the most resistant form of microbial cells and relatively difficult to inactivate by common inactivation techniques, including heat sterilization, radiation, oxidizing agents and various chemicals. Various novel nonthermal processing technologies, alone or in combination, have shown potential for vegetative cells and spores inactivation. Predictive microbiology can be used to focus on the quantitative description of the microbial behaviour in food products, for a given set of environmental conditions

    Effect of Ultrasonic-Assisted Blanching on Size Variation, Heat Transfer, and Quality Parameters of Mushrooms

    Get PDF
    The main aim of this work was to assess the influence of the application of power ultrasound during blanching of mushrooms (60 90 °C) on the shrinkage, heat transfer, and quality parameters. Kinetics of mushroom shrinkage was modeled and coupled to a heat transfer model for conventional (CB) and ultrasonic-assisted blanching (UB). Cooking value and the integrated residual enzymatic activity were obtained through predicted temperatures and related to the hardness and color variations of mushrooms, respectively. The application of ultrasound led to an increase of shrinkage and heat transfer rates, being this increase more intense at low process temperatures. Consequently, processing time was decreased (30.7 46.0 %) and a reduction in hardness (25.2 40.8 %) and lightness (13.8 16.8 %) losses were obtained. The best retention of hardness was obtained by the UB at 60 °C, while to maintain the lightness it was the CB and UB at 90 °C. For enhancing both quality parameters simultaneously, a combined treatment (CT), which consisted of a CB 0.5 min at 90 °C and then an UB 19.9min at 60 °C, was designed. In this manner, compared with the conventional treatment at 60 °C, reductions of 39.1, 27.2, and 65.5 % for the process time, hardness and lightness losses were achieved, respectively. These results suggest that the CT could be considered as an interesting alternative to CB in order to reduce the processing time and improve the overall quality of blanched mushrooms.The authors acknowledge the financial support of Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional de La Plata from Argentina, Erasmus Mundus Action 2-Strand 1 and EuroTango II Researcher Training Program and Ministerio de Economia y Competitividad (SPAIN) and the FEDER (project DPI2012-37466-CO3-03).Lespinard, A.; Bon Corbín, J.; Cárcel Carrión, JA.; Benedito Fort, JJ.; Mascheroni, RH. (2015). Effect of Ultrasonic-Assisted Blanching on Size Variation, Heat Transfer, and Quality Parameters of Mushrooms. Food and Bioprocess Technology. 8(1):41-53. https://doi.org/10.1007/s11947-014-1373-zS415381Aguirre, L., Frias, J. M., Barry-Ryan, C., & Grogan, H. (2009). Modelling browning and brown spotting of mushrooms (Agaricus bisporus) stored in controlled environmental conditions using image analysis. Journal of Food Engineering, 91, 280–286.Anantheswaran, R. C., Sastry, S. K., Beelman, R. B., Okereke, A., & Konanayakam, M. (1986). Effect of processing on yield, color, and texture of canned mushrooms. Journal of Food Science, 51(5), 1197–1200.Biekman, E. S. A., Kroese-Hoedeman, H. I., & Schijvens, E. P. H. M. (1996). Loss of solutes during blanching of mushrooms (Agaricus bisporus) as a result of shrinkage and extraction. Journal of Food Engineering, 28(2), 139–152.Biekman, E. S. A., van Remmen, H. H. J., Kroese-Hoedeman, H. I., Ogink, J. J. M., & Schijvens, E. P. H. M. (1997). Effect of shrinkage on the temperature increase in evacuated mushrooms (Agaricus bisporus) during blanching. Journal of Food Engineering, 33(1–2), 87–99.Brennan, M., Le Port, G., & Gormley, R. (2000). Post-harvest treatment with citric acid or hydrogen peroxide to extend the shelf life of fresh sliced mushrooms. Lebensmittel Wissenschaft und Technologie, 33, 285–289.Cárcel, J. A., Benedito, J., Rosselló, C., & Mulet, A. (2007). Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. Journal of Food Engineering, 78, 472–479.Cárcel, J. A., Benedito, J., Bon, J., & Mulet, A. (2007). High intensity ultrasound effects on meat brining. Meat Science, 76, 611–619.Cárcel, J. A., García-Pérez, J. V., Benedito, J., & Mulet, A. (2011). Food process innovation through new technologies: Use of ultrasound. Journal of Food Engineering, 110, 200–207.Cheng, X., Zhang, M., & Adhikari, B. (2013). The inactivation kinetics of polyphenol oxidase in mushroom (Agaricus bisporus) during thermal and thermosonic treatmemts. Ultrasonics Sonochemistry, 20, 674–679.Cliffe-Byrnes, V., & O’Beirne, D. (2007). Effects of gas atmosphere and temperature on the respiration rates of whole and sliced mushrooms (Agaricus bisporus): implications for film permeability in modified atmosphere packages. Journal of Food Science, 72, 197–204.Coskuner, Y., & Ozdemir, Y. (1997). Effects of canning processes on the elements content of cultivated mushrooms (Agaricus bisporus). Food Chemistry, 60(4), 559–562.Cruz, R. M. S., Vieira, M. C., Fonseca, S. C., & Silva, C. L. M. (2011). Impact of thermal blanching and thermosonication treatments on watercress (Nasturtium officinale) quality: thermosonication process optimisation and microstructure evaluation. Food and Bioprocess Technology, 4(7), 1197–1204.De Gennaro, L., Cavella, S., Romano, R., & Masi, P. (1999). The use of ultrasound in food technology I: inactivation of peroxidase by thermosonication. Journal of Food Engineering, 39, 401–407.De la Fuente, S., Riera, E., Acosta, V. M., Blanco, A., & Gallego-Juárez, J. A. (2006). Food drying process by power ultrasound. Ultrasonics, 44, 523–527.Delgado, A. E., Zheng, L., & Sun, D. W. (2009). Influence of ultrasound on freezing rate of immersion-frozen apples. Food and Bioprocess Technology, 2, 263–270.Devece, C., Rodríguez-López, J. N., Fenoll, J. T., Catalá, J. M., De los Reyes, E., & García-Cánovas, F. (1999). Enzyme inactivation analysis for industrial blanching applications: comparison of microwave, conventional, and combination heat treatments on mushroom polyphenoloxidase activity. Journal of Agricultural and Food Chemistry, 47(11), 4506–4511.Fernandes, F. A. N., & Rodrigues, S. (2007). Ultrasound as pre-treatment for drying of fruits: dehydration of banana. Journal of Food Engineering, 82, 261–267.Gabaldón-Leyva, C. A., Quintero-Ramos, A., Barnard, J., Balandrán-Quintana, R. R., Talamás-Abbud, R., & Jiménez-Castro, J. (2007). Effect of ultrasound on the mass transfer and physical changes in brine bell pepper at different temperatures. Journal of Food Engineering, 81, 374–379.Gallego-Juárez, J. A., Riera, E., De la Fuente, S., Rodríguez-Corral, G., Acosta-Aparicio, V. M., & Blanco, A. (2007). Application of high-power ultrasound for dehydration of vegetables: processes and devices. Drying Technology, 25, 1893–1901.Gamboa-Santos, J., Montilla, A., Soria, A. C., & Villamiel, M. (2012). Effects of conventional and ultrasound blanching on enzyme inactivation and carbohydrate content of carrots. European Food Research and Technology, 234, 1071–1079.García-Pérez, J. V., Cárcel, J. A., De la Fuente, S., & Riera, E. (2006). Ultrasonic drying of foodstuff in a fluidized bed. Parametric study. Ultrasonics, 44, 539–543.García-Pérez, J. V., Cárcel, J. A., Riera, E., Rosselló, C., & Mulet, A. (2012). Intensification of low-temperature drying by using ultrasound. Drying Technology, 30, 1199–1208.Gonzáles-Fandos, E., Giménez, M., Olarte, C., Sanz, S., & Simón, A. (2000). Effect of packaging conditions on the growth of microorganisms and the quality characteristics of fresh mushrooms (Agaricus bisporus) stored at inadequate temperatures. Journal of Applied Microbiology, 89, 624–632.Gormley, T. R. (1975). Chill storage of mushrooms. Journal of the Science of Food and Agriculture, 26, 401–411.Gouzi, H., Depagne, C., & Coradin, T. (2012). Kinetics and thermodynamics of thermal inactivation of polyfenol oxidase in an aqueous extract from Agaricus bisporus. Journal of Agricultural and Food Chemistry, 60, 500–506.Holdsworth, S. D. (1997). Thermal processing of packaged foods. London: Chapman Hall.Horžić, D., Jambrak, A. R., Belščak-Cvitanović, A., Komes, D., & Lelas, V. (2012). Comparison of conventional and ultrasound assisted extraction techniques of yellow tea and bioactive composition of obtained extracts. Food and Bioprocess Technology, 5, 2858–2870.Jambrak, A. R., Mason, T. J., Paniwnyk, L., & Lelas, V. (2007a). Ultrasonic effect on pH, electric conductivity, and tissue surface of button mushrooms, brussels sprouts and cauliflower. Czech Journal of Food Science, 25, 90–99.Jambrak, A. R., Mason, T. J., Paniwnyk, L., & Lelas, V. (2007b). Accelerated drying of button mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. Journal of Food Engineering, 81, 88–97.Jasinski, E. M., Stemberger, B., Walsh, R., & Kilara, A. (1984). Ultra structural studies of raw and processed tissue of the major cultivated mushroom, Agaricus bisporus. Food Microstructure, 3, 191–196.Jolivet, S., Arpin, N., Wicher, H. J., & Pellon, G. (1998). Agaricus bisporus browning: a review. Mycological Research, 102, 1459–1483.Konanayakam, M., & Sastry, S. K. (1988). Kinetics of shrinkage of mushroom during blanching. Journal of Food Science, 53(5), 1406–1411.Kotwaliwale, N., Bakane, P., & Verma, A. (2007). Changes in textural and optical properties of oyster mushroom during hot air drying. Journal of Food Engineering, 78(4), 1207–1211.Leadley C. & Williams A. (2002). Power ultrasound—current and potential applications for food processing, Review No 32, Campden and Chorleywood Food Research Association.Lespinard, A. R., Goñi, S. M., Salgado, P. R., & Mascheroni, R. H. (2009). Experimental determination and modeling of size variation, heat transfer and quality indexes during mushroom blanching. Journal of Food Engineering, 92, 8–17.Lima, M., & Sastry, S. K. (1990). Influence of fluid rheological properties and particle location on ultrasound-assisted heat transfer between liquid and particles. Journal of Food Science, 55(4), 1112–1115.López, P., & Burgos, J. (1995). Peroxidase stability and reactivation after heat treatment and manothermosonication. Journal of Food Science, 60(3), 551–553.López, P., Sala, F. J., Fuente, J. L., Cardon, S., Raso, J., & Burgos, J. (1994). Inactivation of peroxidase lipoxigenase and phenol oxidase by manothermosonication. Journal of Agricultural and Food Chemistry, 42(2), 253–256.Mansfield, T. (1962). High temperature-short time sterilization. Proceedings First International Congress on Food Science and Technology, 4, 311–316.Mason T. J. (1998). Power ultrasound in food processing—the way forward. In M. J. W. Povey & T. J. Mason (Eds.), Ultrasound in Food Processing (pp 103–126). Blackie Academic & Professional, London.McArdle F. J. & Curwen D. (1962). Some factors influencing shrinkage of canned mushrooms. Mushroom Science, 5, 547–557.McArdle, F. J., Kuhn, G. D., & Beelman, R. B. (1974). Influence of vacuum soaking on yield and quality of canned mushrooms. Journal of Food Science, 39, 1026–1028.Mohapatra, D., Bira, Z. M., Kerry, J. P., Frías, J. M., & Rodrigues, F. A. (2010). Postharvest hardness and color evolution of White button mushrooms (Agaricus bisporus). Journal of Food Science, 75(3), 146–152.Ohlsson, T. (1980). Temperature dependence of sensory quality changes during thermal processing. Journal of Food Science, 45(4), 836–847.Ortuño, C., Martínez-Pastor, M., Mulet, A., & Benedito, J. (2013). Application of high power ultrasound in the supercritical carbon dioxide inactivation of Saccharomyces cerevisiae. Food Research International, 51, 474–481.Peralta-Jimenez, L., & Cañizares-Macías, M. P. (2012). Ultrasound-assisted method for extraction of theobromine and caffeine from cacao seeds and chocolate products. Food and Bioprocess Technology, 6, 3522–3529.Rodríguez-López, J. N., Fenoll, N. G., Tudela, J., Devece, C., Sánchez-Hernández, D., De los Reyes, D., et al. (1999). Thermal inactivation of mushroom polyphenoloxidase employing 2450 MHz microwave radiation. Journal of Agricultural Food Chemistry, 47, 3028–3035.Sala, F., Burgos, J., Condon, S., Lopez, P., & Raso, J. (1995). Effect of heat and ultrasound on microorganisms and enzymes. In G. W. Gould (Ed.), New methods of food preservation (1st ed., pp. 176–204). Glasgow: Blackie Academic and professional.Sanjuán, N., Hernando, I., Lluch, M. A., & Mullet, A. (2005). Effects of low temperature blanching on texture, microstructure and rehydration capacity of carrots. Journal of the Science of Food and Agriculture, 85, 2071–2076.Santos, M. V., & Lespinard, A. R. (2011). Numerical simulation of mushrooms during freezing using the FEM and an enthalpy—Kirchhoff formulation. Heat and Mass Transfer, 47, 1671–1683.Sastry, S. K., Beelman, R. B., & Speroni, J. J. (1985). A three-dimensional finite element model for thermally induced changes in foods: application to degradation of agaritine in canned mushrooms. Journal of Food Science, 50(5), 1293–1299.Sastry, S. K., Shen, G. Q., & Blaisdel, J. L. (1989). Effect of ultrasonic vibration on fluid-to-particule convective heat transfer coefficients. Journal of Food Science, 54(1), 229–230.Sensoy, I., & Sastry, S. K. (2004). Ohmic blanching of mushrooms. Journal of Food Process Engineering, 27(1), 1–15.Sheen, S., & Hayakawa, K. (1991). Finite difference simulation for heat conduction with phase change in an irregular food domain with volumetric change. International Journal of Heat and Mass Transfer, 34(6), 1337–1346.Simal, S., Benedito, J., Sanchez, E. S., & Rossello, C. (1998). Use of ultrasound to increase mass transport rates during osmotic dehydration. Journal of Food Engineering, 36, 323–336.Siró, I., Vén, C., Balla, C., Jónás, G., Zeke, I., & Friedrich, L. (2009). Application of an ultrasonic assisted curing technique for improving the diffusion of sodium chloride in porcine meat. Journal of Food Engineering, 91, 353–362.Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity in foods: a review. Trends in Food Science and Technology, 21, 323–331.Verlinden, B. E., Yuksel, D., Baheri, M., De Baerdemaeker, J., & Van Dijk, C. (2000). Low temperature blanching effect on the changes in mechanical properties during subsequent cooking of three potato cultivars. International Journal of Food Science and Technology, 35, 331–340.Wu, C. M., Wu, J. L.-P., Chen, C.-C., & Chou, C.-C. (1981). Flavor recovery from mushroom blanching water. In G. Charalambous & G. Inglett (Eds.), The quality of foods and beverages: chemistry and technology, vol. 1. New York: Academic Press.Zivanovic, S., & Buescher, R. (2004). Changes in mushroom texture and cell wall composition affected by thermal processing. Journal of Food Science, 69, 44–48

    Effects of different pretreatment methods on the drying characteristics and quality of potatoes

    No full text
    The effects of different pretreatments on the vitamin C content of peeled fresh potato, the drying characteristics, and several quality attributes of dehydrated potatoes were investigated. Citric acid pretreatment (0.1%–0.3%, 10–30 min), steam blanching (100ºC, 1–2 min), and water blanching (95°C, 1–2 min) were found to have no obvious effect on the drying rate of potatoes, whereas temperature was the main influencing factor. In terms of quality of dehydrated diced potato, 20 min of citric acid pretreatment resulted in the highest vitamin C retention and better color. Furthermore, dehydrated potato pretreated with citric acid all showed similar dynamic moisture adsorption curves, namely type II sorption isotherm. The moisture adsorption curves can be well fitted using the Guggenheim–Anderson–deBoer model with R2 higher than .97

    Validation of novel food safety climate components and assessment of their indicators in Central and Eastern European food industry

    No full text
    Important insight into the Central and Eastern European food industry, beyond traditional food safety (FS) management and reflects on its food safety climate or the human route of its food safety culture is provided. Novel FS climate self-assessment tool was developed and validated by 65 FS experts from governmental agencies, third party certification bodies, food sector associations, universities and food industry. Three original FS climate components: FS knowledge, business priorities and FS legislation, were introduced and their nine components were assessed in nine Central and Eastern European countries involving 470 food companies. FS knowledge was better assessed in big and medium sized than in small companies. Knowledge component was equally assessed as good, irrespective of the FS risk profile of the food company surveyed while certified FS management system was charted by higher FS knowledge scores within a same food company. Business priorities in Central and Eastern European food organizations were related to hygiene and food safety and were always put before profit regardless of the company size. Hygiene and food safety were seen equality as a critical business success factor irrespective of the associated level of riskiness. FS climate legislation component in all food organizations surveyed was assessed affirmatively. Central and Eastern European food companies seemed to avoid problems in cooperation and trust between food safety leaders and other employees, since they have perceived FS climate highly and similarly. EU operating food companies had comparable overall FS climate to non-EU companies mostly because they have equally perceived their business priorities and appropriateness of associated FS legislation. The only exception was the FS knowledge that was better assessed in EU than non-EU food enterprises
    corecore