13 research outputs found

    Mycotoxin Occurrence in Milk and Durum Wheat Samples from Tunisia Using Dispersive Liquid–Liquid Microextraction and Liquid Chromatography with Fluorescence Detection

    No full text
    Food and feed contamination with mycotoxins is a major public health concern. Humans and animals are exposed to these toxins by consuming contaminated products throughout their lives. In this study, a method based on dispersive liquid–liquid microextraction (DLLME), followed by liquid chromatography with fluorescence detection (LC-FLD), was validated for the determination of aflatoxins (AFs) M1, B1, B2, G1, G2, zearalenone (ZEN), and ochratoxin A (OTA). The method was applied to 150 raw cow milk samples and 90 market durum wheat samples from two Tunisian climatic regions: the littoral region (Mahdia) and the continental region (Béja). This work was carried out to obtain more surveillance data to support rapid initiatives to assure safe foods and protect consumer health and to estimate the daily exposure of the Tunisian population consuming those products. AFG2 and OTA were found in wheat with incidences of 54.4 and 11.1%, respectively. On the other side, milk samples were contaminated by AFG2, AFB1, and AFB2 with incidences of 8.7%, 2.0%, and 0.67%, respectively. Some of the samples showed OTA concentrations above the maximum limit allowed by the European Union, which represents a health risk for consumers in Tunisia, where no legislation exists about the maximum content of mycotoxins in food

    The Occurrence and Health Risk Assessment of Aflatoxin M1 in Raw Cow Milk Collected from Tunisia during a Hot Lactating Season

    No full text
    Milk is a staple food that is essential for human nutrition because of its high nutrient content and health benefits. However, it is susceptible to being contaminated by Aflatoxin M1 (AFM1), which is a toxic metabolite of Aflatoxin B1 (AFB1) presented in cow feeds. This research investigated AFM1 in Tunisian raw cow milk samples. A total of 122 samples were collected at random from two different regions in 2022 (Beja and Mahdia). AFM1 was extracted from milk using the QuEChERS method, and contamination amounts were determined using liquid chromatography (HPLC) coupled with fluorescence detection (FD). Good recoveries were shown with intra-day and inter-day precisions of 97 and 103%, respectively, and detection and quantification levels of 0.003 and 0.01 µg/L, respectively. AFM1 was found in 97.54% of the samples, with amounts varying from values below the LOQ to 197.37 µg/L. Lower AFM1 was observed in Mahdia (mean: 39.37 µg/L), respectively. In positive samples, all AFM1 concentrations exceeded the EU maximum permitted level (0.050 µg/L) for AFM1 in milk. In Tunisia, a maximum permitted level for AFM1 in milk and milk products has not been established. The risk assessment of AFM1 was also determined. Briefly, the estimated intake amount of AFM1 by Tunisian adults through raw cow milk consumption was 0.032 µg/kg body weight/day. The Margin of Exposure (MOE) values obtained were lower than 10,000. According to the findings, controls as well as the establishment of regulations for AFM1 in milk are required in Tunisia
    corecore