25 research outputs found

    Comparison of SARS-cov-2 RdRp protein with SARS-cov RdRp protein

    Get PDF
    The World Health Organization (WHO) declared, on January 30, 2020, a public health emergency of international scope because of the emergence of a new virus called SARS-cov-2. This new virus belongs to the coronavirus family and has a protein called RNA-dependent RNA polymerase (RdRp) which is responsible for the replication of viral RNA. RdRp protein is one of the most primary targets for antiviral drug discoveries. The aim of this paper was to compare the amino acid sequence of the RdRp of SARS-cov-2 with that of SARS-cov. Thus, we found that there is a 96% sequence similarity between them. Indeed, there is only a difference at the level of 32 amino acids. Interestingly, only one residue at C Motif and two residues at D Motif are different. However, all the residues of the motifs A, B, E, F and G are 100% identical with those of SARS-cov-RdRp

    Emerging and re-emerging viral diseases

    Get PDF
    Emerging infectious diseases can be defined as infections that have either newly appeared in a population, or existed, but are rapidly increasing in incidence or geographical range. Even thought there was considerable development regarding prevention, control and elimination of some of the infectious diseases through proper use of hygiene and sanitation practices in addition to development of anti- biotics (bacteria) and vaccination, some infectious diseases remained as the leading causes of morbidity and mortality worldwide. There are many factors involved in the emergence of new infectious diseases or the re-emergence of “old” infectious diseases. Increasing global epidemiological surveillance, improving public health systems, education and research into new antibiotics and new vaccines will allow us to effectively combat the constantly renewed threat of infectious diseases. This review summarizes the work on aspects of virus emergence

    Phylodynamics and Human-Mediated Dispersal of a Zoonotic Virus

    Get PDF
    Understanding the role of humans in the dispersal of predominately animal pathogens is essential for their control. We used newly developed Bayesian phylogeographic methods to unravel the dynamics and determinants of the spread of dog rabies virus (RABV) in North Africa. Each of the countries studied exhibited largely disconnected spatial dynamics with major geo-political boundaries acting as barriers to gene flow. Road distances proved to be better predictors of the movement of dog RABV than accessibility or raw geographical distance, with occasional long distance and rapid spread within each of these countries. Using simulations that bridge phylodynamics and spatial epidemiology, we demonstrate that the contemporary viral distribution extends beyond that expected for RABV transmission in African dog populations. These results are strongly supportive of human-mediated dispersal, and demonstrate how an integrated phylogeographic approach will turn viral genetic data into a powerful asset for characterizing, predicting, and potentially controlling the spatial spread of pathogens

    Gradual emergence followed by exponential spread of the SARS-CoV-2 Omicron variant in Africa.

    Get PDF
    The geographic and evolutionary origins of the SARS-CoV-2 Omicron variant (BA.1), which was first detected mid-November 2021 in Southern Africa, remain unknown. We tested 13,097 COVID-19 patients sampled between mid-2021 to early 2022 from 22 African countries for BA.1 by real-time RT-PCR. By November-December 2021, BA.1 had replaced the Delta variant in all African sub-regions following a South-North gradient, with a peak Rt of 4.1. Polymerase chain reaction and near-full genome sequencing data revealed genetically diverse Omicron ancestors already existed across Africa by August 2021. Mutations, altering viral tropism, replication and immune escape, gradually accumulated in the spike gene. Omicron ancestors were therefore present in several African countries months before Omicron dominated transmission. These data also indicate that travel bans are ineffective in the face of undetected and widespread infection

    Retraction.

    Get PDF
    This is a retraction of 'Gradual emergence followed by exponential spread of the SARS-CoV-2 Omicron variant in Africa' 10.1126/science.add873

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Coronavirus disease 2019—Historical context, virology, pathogenesis, immunotherapy, and vaccine development

    No full text
    The current Coronavirus Disease 2019 (COVID-19) pandemic is causing great alarm around the world. The pathogen for COVID-19 – severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) – is the seventh known coronavirus to cause pneumonia in humans. While much remains unknown about SARS-CoV-2, physicians and researchers have begun to publish relevant findings, and much evidence is available on coronaviruses previously circulating in human and animal populations. In this review, we situate COVID-19 in its context as a transboundary viral disease, and provide a comprehensive discussion focused on the discovery, spread, virology, pathogenesis, and clinical features of this disease, its causative coronaviral pathogen, and approaches to combating the disease through immunotherapies and other treatments and vaccine development. An epidemiological survey revealed a potentially large number of asymptomatic SARS-CoV-2 carriers within the population, which may hamper efforts against COVID-19. Finally, we emphasize that vaccines against SARS-CoV-2, which may be developed by 2021, will be essential for prevention of COVID-19
    corecore