29 research outputs found

    Unraveling Molecular Fingerprints of Catalytic Sulfur Poisoning at the Nanometer Scale with Near-Field Infrared Spectroscopy

    Get PDF
    Fundamental understanding of catalytic deactivation phenomena such as sulfur poisoning occurring on metal/metal-oxide interfaces is essential for the development of high-performance heterogeneous catalysts with extended lifetimes. Unambiguous identification of catalytic poisoning species requires experimental methods simultaneously delivering accurate information regarding adsorption sites and adsorption geometries of adsorbates with nanometer-scale spatial resolution, as well as their detailed chemical structure and surface functional groups. However, to date, it has not been possible to study catalytic sulfur poisoning of metal/metal-oxide interfaces at the nanometer scale without sacrificing chemical definition. Here, we demonstrate that near-field nano-infrared spectroscopy can effectively identify the chemical nature, adsorption sites, and adsorption geometries of sulfur-based catalytic poisons on a Pd(nanodisk)/Al2O3 (thin-film) planar model catalyst surface at the nanometer scale. The current results reveal striking variations in the nature of sulfate species from one nanoparticle to another, vast alterations of sulfur poisoning on a single Pd nanoparticle as well as at the assortment of sulfate species at the active metal-metal-oxide support interfacial sites. These findings provide critical molecular-level insights crucial for the development of long-lifetime precious metal catalysts resistant toward deactivation by sulfur

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation

    Prospective, multicentre study of screening, investigation and management of hyponatraemia after subarachnoid haemorrhage in the UK and Ireland

    Get PDF
    Background: Hyponatraemia often occurs after subarachnoid haemorrhage (SAH). However, its clinical significance and optimal management are uncertain. We audited the screening, investigation and management of hyponatraemia after SAH. Methods: We prospectively identified consecutive patients with spontaneous SAH admitted to neurosurgical units in the United Kingdom or Ireland. We reviewed medical records daily from admission to discharge, 21 days or death and extracted all measurements of serum sodium to identify hyponatraemia (<135 mmol/L). Main outcomes were death/dependency at discharge or 21 days and admission duration >10 days. Associations of hyponatraemia with outcome were assessed using logistic regression with adjustment for predictors of outcome after SAH and admission duration. We assessed hyponatraemia-free survival using multivariable Cox regression. Results: 175/407 (43%) patients admitted to 24 neurosurgical units developed hyponatraemia. 5976 serum sodium measurements were made. Serum osmolality, urine osmolality and urine sodium were measured in 30/166 (18%) hyponatraemic patients with complete data. The most frequently target daily fluid intake was >3 L and this did not differ during hyponatraemic or non-hyponatraemic episodes. 26% (n/N=42/164) patients with hyponatraemia received sodium supplementation. 133 (35%) patients were dead or dependent within the study period and 240 (68%) patients had hospital admission for over 10 days. In the multivariable analyses, hyponatraemia was associated with less dependency (adjusted OR (aOR)=0.35 (95% CI 0.17 to 0.69)) but longer admissions (aOR=3.2 (1.8 to 5.7)). World Federation of Neurosurgical Societies grade I–III, modified Fisher 2–4 and posterior circulation aneurysms were associated with greater hazards of hyponatraemia. Conclusions: In this comprehensive multicentre prospective-adjusted analysis of patients with SAH, hyponatraemia was investigated inconsistently and, for most patients, was not associated with changes in management or clinical outcome. This work establishes a basis for the development of evidence-based SAH-specific guidance for targeted screening, investigation and management of high-risk patients to minimise the impact of hyponatraemia on admission duration and to improve consistency of patient care

    Predicting sandy-clayey soil properties using electrical resistivity testing

    No full text
    Non-destructive tests are economical and easy-to-use techniques to determine different soil properties, which speed up the determination of sub-surface characteristics. They include ground-penetrating radar, seismographs, shear wave velocity and electrical resistivity testing. The latter is gaining worldwide popularity for determining sub-surface geology in geotechnical engineering as it does not require extensive testing. The aim of the study reported in this paper was to develop empirical correlations of electrical resistivity testing with different soil parameters by performing extensive conventional laboratory tests. These correlations would help in computing the required soil parameters by performing solely electrical resistivity testing, saving the time and effort required by conventional tests. The correlations developed included the relationship of resistivity values of soil with the drained angle of internal friction, effective cohesion, Atterberg's limits, maximum dry density, optimum moisture content and bearing capacity of a variety of shallow foundations. The regression coefficients obtained ensured the development of quite a good correlation, such that the result of electrical resistivity testing can be used for reasonably accurate determination of sandy-clayey soil propertie

    Sustainable use of soda lime glass powder (SLGP) in expansive soil stabilization

    No full text
    The focus of this experimental study is to ameliorate the engineering behavior of Palygorskite-rich medium Expansive soils (ES) by utilizing soda lime glass powder (SLGP). The hydrophilic ES are problematic and tend to damage the pavements, boundary walls, and slab-on-grade members Whereas, the accumulation of huge amounts of SLGP is responsible for multitude of environmental issues. Therefore, SLGP was added to the ES using various dosage levels (0 %, 6 %, 10 %, 14 %, 16 %, 18 %, and 22 % by dry weight of the ES to assess the compaction, consolidation and strength characteristics by performing geotechnical laboratory tests. Also, the effect of curing on th unconfined compressive strength of ES (UCS-ES) after 3, 7, 14, and 28 days was studied by considering the mineralogical changes. The microscopic mechanisms of the virgin ES and the SLGP-treated mixtures was evaluated by X-ray fluorescence (XRF), X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses. The results revealed that, plasticity dropped by almost 80 % (due to filler effect, cohesionless character, and higher silica amount of the SLGP), MDD increased from 18.25 to 19.16 kN/m3, and the OMC lowered down (due to the reduction in volume of clay minerals and interlayer spaces). With increasing SLGP dosage levels the coefficient of compression (Cc) decreased by 42.86 %, coefficient of volume (mv) by 60 %, coefficient of consolidation (cv) by 91.53 %, and the pre-consolidation pressures (Pc) witnessed an increase of 240 %. The UCS-ESunsoaked values exceed than the UCS-ES soaked values, particularly at early days of curing (1-7 days) such that UCS-ESsoaked = 13 x UCS-ESsoaked after one day, whereas UCS-ESsoaked = 5.25 x UCS-ESsoaked after 28 days. Similarly, a remarkable improvement (of six-fold) in strength was recorded based on California bearing ratio (CBR) values with 16 % replacement of the SLGP additive. Also, the compactability and strength characteristics were significantly improved and the plasticity plummeted due to formation of C-S-H and C-A-H compounds. Thus, the inclusion of 16 % SLGP in the medium ES was found as the optimum amount in reducing plasticity, improving consolidation characteristics and imparting strength

    Correlation of electrical resistivity test with the geotechnical parameters of Sandy soil

    No full text
    There are different techniques to stabilize and improve the properties of soils with low shear strength, bearing capacity and other swelling parameters. This study includes the chemical analysis of expansive soils using X-ray diffraction (XRD) and scanning electron microscopy (SEM) before and after the stabilization using tire rubber powder (TRP) and cement kiln dust (CKD) in order to evaluate the geotechnical properties. Test results indicate that the inclusion of CKD-TRP mixture, not only reduces the plasticity of soil but also increases its unconfined compression strength, maximum dry density, and other strength characteristics. Finally, 5% TRP and 10% CKD addition is recommended as an optimum amount from the viewpoint of plasticity and strength characteristics

    Strength, hydraulic, and microstructural characteristics of expansive soils incorporating marble dust and rice husk ash

    No full text
    Expansive/swell-shrink soils exhibit high plasticity and low strength, which lead to settlement and instability of lightly loaded structures. These problematic soils contain various swelling clay minerals that are unsuitable for engineering requirements. In an attempt to counter the treacherous damage of such soils in modern geotechnical engineering, efforts are underway to utilize environmentally friendly and sustainable waste materials as stabilizers. This study evaluates the strength and consolidation characteristics of expansive soils treated with marble dust (MD) and rice husk ash (RHA) through a multitude of laboratory tests, including consistency limits, compaction, uniaxial compression strength (UCS), and consolidation tests. By using X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses, the effect of curing on UCS after 3, 7, 14, 28, 56, and 112 days was studied from the standpoint of microstructural changes. Also, the long-term strength development of treated soils was analyzed in terms of the interactive response of impacting factors with the assistance of a series of ANN-based sensitivity analyses. It is found from the results that the addition of MD and RHA lowered down the water holding capacity, thereby causing a reduction in soil plasticity (by 21% for MD and 14.5% for RHA) and optimum water content (by 2% for MD and increased by 6% for RHA) along with an increase in the UCS (for 8% MD from 97 kPa to 471 kPa and for 10% RHA from 211 kPa to 665 kPa, after 3 days and 112 days of curing, respectively). Moreover, from the oedometer test results, mv initially increased up to 6% dosage and then dropped with further increase in the preconsolidation pressure. Furthermore, the compression index dropped with an increase in the preconsolidation pressure and addition of MD/RHA, while the coefficient of permeability (k) of RHA stabilized soil was higher than that of MD-treated samples for almost all dosage levels. The formation of the fibrous cementitious compounds (C-S-H; C-A-H) increased at optimum additive dosage after 7 days and at higher curing periods. Hence, the use of 10% RHA and 12% MD as replacement of the expansive soil is recommended for higher efficacy. This research would be helpful in reducing the impacts created by the disposal of both expansive soil and industrial and agricultural waste materials

    Isolated effect and sensitivity of agricultural and industrial waste Ca-based stabilizer materials (CSMs) in evaluating swell shrink nature of palygorskite-rich clays

    No full text
    This paper evaluates the suitability of sugarcane bagasse ash (SCBA) and waste marble dust (WMD) on the geotechnical properties of Palygorskite-rich expansive clays located in northwest Pakistan. These problematic soils exhibit undesirable characteristics which greatly affect the pavements, boundary walls, slab-on-grade members, and other civil engineering infrastructures. A series of geotechnical tests were performed on soil specimens using prescribed percentages of the aforementioned Ca-based stabilizer materials (CSMs). The investigation includes X-Ray Diffraction (XRD) Analysis, Scanning Electron Microscopy (SEM), X-Ray Fluorescence (XRF) tests, and physicomechanical properties such as moisture-density relationship, Atterberg's limits, swell pressure, and an ANN-based sensitivity analyses of overall swell pressure development. The outcomes of these experimental investigations showed that the addition of CSMs into the expansive soils increased to 4% SCBA and 10% WMD, the plasticity index reduced by 30% and 49%, the volumetric swell decreased from approximately 49% to 86% and 63%, and the swelling pressure reduction was from 189kPa to 120kPa and 160kPa (about 15% and 36%), respectively. It is interesting to note that replacement with specified CSM accelerated the strength of soil at extended curing periods and the optimum improvement in the strength behavior of the soil was also recorded. Moreover, with addition of the respective CSMs, the compactability and strength characteristics were ameliorated, while plasticity was significantly lowered. Given the amount of SCBA and WMD produced annually, their utilization for the stabilization of problematic soils, even in relatively low concentrations, could potentially have a substantial impact on the sustainable reuse of these waste materials

    Field appraisal of entomopathogenic fungi horizontal transmission device for entomo-vectoring of Beauveria bassiana and Metarhizium anisopliae in bitter gourd field against Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae)

    No full text
    Abstract Background Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) infestation poses a serious risk to bitter gourd cultivation. Traditionally, B. cucurbitae has been controlled using synthetic pesticides, which have drawbacks such as non-target toxicity and pest resistance. Entomopathogenic fungi (EPF) provide concentrated ecological alternatives, which support ongoing pest reduction and sustainable agriculture by adhering to Integrated Pest Management principles. Therefore, EPF provides a viable alternative for chemical control of B. cucurbitae, addressing its shortcomings and promoting environmentally friendly pest control technology. This study evaluated the effectiveness of entomo-vectored horizontal transmission devices (EV-HTD) against B. cucurbitae in bitter gourd fields, focusing on GF-120 and Butanone acetate. Assessment parameters include converting fruit infestation data into yield loss per plant, marketable fruit yield per plant, marketable yield per hectare, and yield loss per hectare. Results The highest mean percentage of entomo-vectored B. cucurbitae (70.50%) was found in plots treated with Butanone acetate + B. bassiana-based EV-HTD. This was followed by GF-120 + B. bassiana-based EV-HTD (66.18%), Butanone acetate + M. anisopliae-based EV-HTD (58.95%), and GF-120 + M. anisopliae-based EV-HTD (54.78%). The Butanone acetate + B. bassiana-based EV-HTD produced the highest mean number of spores per B. cucurbitae (7.80 spores/cm2), while the other treatments produced low spore counts. Plots treated with Butanone acetate + B. bassiana-based EV-HTD had the highest percentage mortality of B. cucurbitae (81.20%). The percentage of fruit infestation varied between 9.00 and 34.00%, with the least amount of infestation seen in plots treated with B. bassiana + Butanone acetate. There were minimal yield losses in Butanone acetate. The Butanone acetate + B. bassiana-based EV-HTD showed the lowest yield losses (66.66 g/plant), while the other treatments showed high losses. Plots treated with Butanone acetate + B. bassiana-based EV-HTD had the highest marketable yield per plant (673.87 g/plant), while yields in control treatments were low. Plots treated with Butanone acetate + B. bassiana-based EV-HTD had the highest marketable yield (2217.85 kg/ha). Lastly, plots treated with Butanone acetate + B. bassiana-based EV-HTD (219.40 kg/ha) showed the lowest yield losses per hectare. Conclusions According to the study’s findings, Butanone acetate-based EV-HTD was more successful than GF-120. Furthermore, B. bassiana was more effective at controlling B. cucurbitae than M. anisopliae. With a maximum cost–benefit ratio of 14.99, the treatment Butanone acetate + B. bassiana was shown to be the most advantageous economically, suggesting its potential for use in practical pest management techniques
    corecore