42 research outputs found
RTE and CTE mRNA export elements synergistically increase expression of unstable, Rev-dependent HIV and SIV mRNAs
Studies of retroviral mRNA export identified two distinct RNA export elements utilizing conserved eukaryotic mRNA export mechanism(s), namely the Constitutive Transport Element (CTE) and the RNA Transport Element (RTE). Although RTE and CTE are potent in nucleocytoplasmic mRNA transport and expression, neither element is as powerful as the Rev-RRE posttranscriptional control. Here, we found that whereas CTE and the up-regulatory mutant RTEm26 alone increase expression from a subgenomic gag and env clones, the combination of these elements led to a several hundred-fold, synergistic increase. The use of the RTEm26-CTE combination is a simple way to increase expression of poorly expressed retroviral genes to levels otherwise only achieved via more cumbersome RNA optimization. The potent RTEm26-CTE element could be useful in lentiviral gene therapy vectors, DNA-based vaccine vectors, and gene transfer studies of other poorly expressed genes
Characterization and optimization of heroin hapten-BSA conjugates: method development for the synthesis of reproducible hapten-based vaccines
A potential new treatment for drug addiction is immunization with vaccines that induce antibodies that can abrogate the addictive effects of the drug of abuse. One of the challenges in the development of a vaccine against drugs of abuse is the availability of an optimum procedure that gives reproducible and high yielding hapten-protein conjugates. In this study, a heroin/morphine surrogate hapten (MorHap) was coupled to bovine serum albumin (BSA) using maleimide-thiol chemistry. MorHap-BSA conjugates with 3, 5, 10, 15, 22, 28, and 34 haptens were obtained using different linker and hapten ratios. Using this optimized procedure, MorHap-BSA conjugates were synthesized with highly reproducible results and in high yields. The number of haptens attached to BSA was compared by 2,4,6-trinitrobenzenesulfonic acid (TNBS) assay, modified Ellman’s test and matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Among the three methods, MALDI-TOF MS discriminated subtle differences in hapten density. The effect of hapten density on enzyme-linked immunosorbent assay (ELISA) performance was evaluated with seven MorHap-BSA conjugates of varying hapten densities, which were used as coating antigens. The highest antibody binding was obtained with MorHap-BSA conjugates containing 3–5 haptens. This is the first report that rigorously analyzes, optimizes and characterizes the conjugation of haptens to proteins that can be used for vaccines against drugs of abuse. The effect of hapten density on the ELISA detection of antibodies against haptens demonstrates the importance of careful characterization of the hapten density by the analytical techniques described. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00216-014-8035-x) contains supplementary material, which is available to authorized users
Altered Response Hierarchy and Increased T-Cell Breadth upon HIV-1 Conserved Element DNA Vaccination in Macaques
HIV sequence diversity and potential decoy epitopes are hurdles in the development of an effective AIDS vaccine. A DNA vaccine candidate comprising of highly conserved p24 gag elements (CE) induced robust immunity in all 10 vaccinated macaques, whereas full-length gag DNA vaccination elicited responses to these conserved elements in only 5 of 11 animals, targeting fewer CE per animal. Importantly, boosting CE-primed macaques with DNA expressing full-length p55 gag increased both magnitude of CE responses and breadth of Gag immunity, demonstrating alteration of the hierarchy of epitope recognition in the presence of pre-existing CE-specific responses. Inclusion of a conserved element immunogen provides a novel and effective strategy to broaden responses against highly diverse pathogens by avoiding decoy epitopes, while focusing responses to critical viral elements for which few escape pathways exist
Expression and purification of HtpX-like small heat shock integral membrane protease of an unknown organism related to Methylobacillus flagellatus
The M48 conserved family of peptidases contains a single catalytic zinc ion tetrahedrally co-ordinated by two histidines within an HEXXH motif. The proteases of this class are generally toxic to the cell and thus difficult to express and purify. Here, we report the expression and purification of the small HtpX-like heat shock metalloprotease from an unknown organism related to the obligate methylotrophic anaerobic bacterium, Methylobacillus flagellatus. The protease was expressed in the Escherichia coli vector-pT7. Optimization of expression was done to increase the yield and solubility of the expressed protein. Improved refolding procedures from inclusion bodies of pT7 E. coli system were devised to get the protease in an active and stable form. The protease was purified to near homogeneity in its active form from the refolded proteins of the inclusion bodies by a two-step (cation exchange followed by gel filtration) high performance liquid chromatography (HPLC). The purified protease was active on zymography and casein hydrolysis assays. The activity of the protease was found to be optimum at pH 7.4 and at a temperature of 37 °C but significant activity was also retained at higher temperatures of 45-50 °C. Centrifugal fractionation showed that it is a membrane localized endopeptidase. The methods described here can serve as guidelines to express and purify other homologues of M48 family of proteases for functional and structural studies
Identification, expression, modeled structure and serological characterization of Plasmodium vivax histone 2B
Histones play important role in DNA packaging, replication and gene expression. Here, we describe the isolation and characterization of histone 2B (PvH2B) gene from the most common but non-cultivable human malaria parasite Plasmodium vivax. The isolated cDNA clone of PvH2B was allowed to express in Escherichia coli and the recombinant protein was purified by affinity chromatography. The expressed PvH2B protein showed DNA-binding properties on the South-Western analysis and the confocal microscopy localized it in the parasite nucleus. This gene is actively expressed during blood stages of the parasite and all P. vivax patients produced antibodies against the protein. The mRNA of PvH2B was found to contain a poly(A) tail at its 3' end, unlike abundant mRNA of human H2B. The encoded polypeptide is 118 amino acid long contains a nuclear targeting site, a signature motif of H2B and showed 74% homology to its host molecule. The structure of PvH2B showed that it has certain differences from that of its host at critical functional sites (viz acetylation, methylation, trypsin cleavage, DNA-binding and inter-histone interaction) which are required for general gene expression and DNA packaging. The distinctive structural features of P. vivax H2B described here may help in designing the specific antimalarial drugs
Identification, expression, localization and serological characterization of a tryptophan-rich antigen from the human malaria parasite Plasmodium vivax
Plasmodium vivax is most common but non-cultivable human malaria parasite which is poorly characterized at the molecular level. Here, we describe the identification and characterization of a P. vivax Tryptophan-Rich Antigen (PvTRAg) which contains unusually high (8.28%) tryptophan residues and is expressed by all blood stages of the parasite. The pvtrag gene comprises a 978 bp open reading frame interrupted by two introns. The first intron is located in the 5'-untranslated region while the second one is positioned 174 bp downstream to the ATG codon. The encoded <SUP>~</SUP>40 kDa protein contains a transmembrane domain near the N-terminus followed by a tryptophan-rich domain with significantly high surface probability and antigenic index. It is localized in the parasite cytoplasm as well as in the cytoplasm of the parasitized erythrocyte. The purified E. coli expressed recombinant PvTRAg protein showed a very high seropositivity rate for the presence of antibodies amongst the P. vivax patients, indicating that the antigen generates significant humoral immune response during the natural course of P. vivax infection. Analysis of various field isolates revealed that the tryptophan-rich domain is highly conserved except for three-point mutations. The PvTRAg could be a potential vaccine candidate since similar tryptophan-rich antigens of P. yoelii have shown protection against malaria in murine model
Altered Response Hierarchy and Increased T-Cell Breadth upon HIV-1 Conserved Element DNA Vaccination in Macaques
<div><p>HIV sequence diversity and potential decoy epitopes are hurdles in the development of an effective AIDS vaccine. A DNA vaccine candidate comprising of highly conserved p24<sup>gag</sup> elements (CE) induced robust immunity in all 10 vaccinated macaques, whereas full-length <i>gag</i> DNA vaccination elicited responses to these conserved elements in only 5 of 11 animals, targeting fewer CE per animal. Importantly, boosting CE-primed macaques with DNA expressing full-length p55<sup>gag</sup> increased both magnitude of CE responses and breadth of Gag immunity, demonstrating alteration of the hierarchy of epitope recognition in the presence of pre-existing CE-specific responses. Inclusion of a conserved element immunogen provides a novel and effective strategy to broaden responses against highly diverse pathogens by avoiding decoy epitopes, while focusing responses to critical viral elements for which few escape pathways exist.</p></div