59 research outputs found

    Cavity-mediated electron-photon superconductivity

    Full text link
    We investigate electron paring in a two-dimensional electron system mediated by vacuum fluctuations inside a nanoplasmonic terahertz cavity. We show that the structured cavity vacuum can induce long-range attractive interactions between current fluctuations which lead to pairing in generic materials with critical temperatures in the low-Kelvin regime for realistic parameters. The induced state is a pair density wave superconductor which can show a transition from a fully gapped to a partially gapped phase - akin to the pseudogap phase in high-TcT_c superconductors. Our findings provide a promising tool for engineering intrinsic electron interactions in two-dimensional materials.Comment: 11 page

    Optical control of the current-voltage relation in stacked superconductors

    Full text link
    We simulate the current-voltage relation of short layered superconductors, which we model as stacks of capacitively coupled Josephson junctions. The system is driven by external laser fields, in order to optically control the voltage drop across the junction. We identify parameter regimes in which supercurrents can be stabilised against thermally induced phase slips, thus reducing the effective voltage across the superconductor. Furthermore, single driven Josephson junctions are known to exhibit phase-locked states, where the superconducting phase is locked to the driving field. We numerically observe their persistence in the presence of thermal fluctuations and capacitive coupling between adjacent Josephson junctions. Our results indicate how macroscopic material properties can be manipulated by exploiting the large optical nonlinearities of Josephson plasmons.Comment: 7 pages, 7 figure

    Mott polaritons in cavity-coupled quantum materials

    Full text link
    We show that strong electron-electron interactions in cavity-coupled quantum materials can enable collectively enhanced light-matter interactions with ultrastrong effective coupling strengths. As a paradigmatic example we consider a Fermi-Hubbard model coupled to a single-mode cavity and find that resonant electron-cavity interactions result in the formation of a quasi-continuum of polariton branches. The vacuum Rabi splitting of the two outermost branches is collectively enhanced and scales with geff2Lg_{\text{eff}}\propto\sqrt{2L}, where LL is the number of electronic sites, and the maximal achievable value for geffg_{\text{eff}} is determined by the volume of the unit cell of the crystal. We find that geffg_{\text{eff}} for existing quantum materials can by far exceed the width of the first excited Hubbard band. This effect can be experimentally observed via measurements of the optical conductivity and does not require ultra-strong coupling on the single-electron level. Quantum correlations in the electronic ground state as well as the microscopic nature of the light-matter interaction enhance the collective light-matter interaction compared to an ensemble of independent two-level atoms interacting with a cavity mode.Comment: 11 pages, 4 figures. arXiv admin note: text overlap with arXiv:1806.0675

    Terahertz field control of interlayer transport modes in cuprate superconductors

    Full text link
    We theoretically show that terahertz pulses with controlled amplitude and frequency can be used to switch between stable transport modes in layered superconductors, modelled as stacks of Josephson junctions. We find pulse shapes that deterministically switch the transport mode between superconducting, resistive and solitonic states. We develop a simple model that explains the switching mechanism as a destablization of the centre of mass excitation of the Josephson phase, made possible by the highly non-linear nature of the light-matter coupling

    Coarse graining methods for spin net and spin foam models

    Full text link
    We undertake first steps in making a class of discrete models of quantum gravity, spin foams, accessible to a large scale analysis by numerical and computational methods. In particular, we apply Migdal-Kadanoff and Tensor Network Renormalization schemes to spin net and spin foam models based on finite Abelian groups and introduce `cutoff models' to probe the fate of gauge symmetries under various such approximated renormalization group flows. For the Tensor Network Renormalization analysis, a new Gauss constraint preserving algorithm is introduced to improve numerical stability and aid physical interpretation. We also describe the fixed point structure and establish an equivalence of certain models.Comment: 39 pages, 13 figures, 1 tabl

    Meeting Report: Aging Research and Drug Discovery

    Get PDF
    Aging is the single largest risk factor for most chronic diseases, and thus possesses large socioeconomic interest to continuously aging societies. Consequently, the field of aging research is expanding alongside a growing focus from the industry and investors in aging research. This year's 8th Annual Aging Research and Drug Discovery ARDD) meeting was organized as a hybrid meeting from August 30th to September 3rd 2021 with more than 130 attendees participating on-site at the Ceremonial Hall at University of Copenhagen, Denmark, and 1800 engaging online. The conference comprised of presentations from 75 speakers focusing on new research in topics including mechanisms of aging and how these can be modulated as well as the use of AI and new standards of practices within aging research. This year, a longevity workshop was included to build stronger connections with the clinical community

    Cavity-Mediated Unconventional Pairing in Ultracold Fermionic Atoms

    No full text
    corecore