4,095 research outputs found

    First-principles calculations of exchange interactions, spin waves, and temperature dependence of magnetization in inverse-Heusler-based spin gapless semiconductors

    Get PDF
    Employing first principles electronic structure calculations in conjunction with the frozen-magnon method we calculate exchange interactions, spin-wave dispersion, and spin-wave stiffness constants in inverse-Heusler-based spin gapless semiconductor (SGS) compounds Mn2_2CoAl, Ti2_2MnAl, Cr2_2ZnSi, Ti2_2CoSi and Ti2_2VAs. We find that their magnetic behavior is similar to the half-metallic ferromagnetic full-Heusler alloys, i.e., the intersublattice exchange interactions play an essential role in the formation of the magnetic ground state and in determining the Curie temperature, TcT_\mathrm{c}. All compounds, except Ti2_2CoSi possess a ferrimagnetic ground state. Due to the finite energy gap in one spin channel, the exchange interactions decay sharply with the distance, and hence magnetism of these SGSs can be described considering only nearest and next-nearest neighbor exchange interactions. The calculated spin-wave dispersion curves are typical for ferrimagnets and ferromagnets. The spin-wave stiffness constants turn out to be larger than those of the elementary 3dd-ferromagnets. Calculated exchange parameters are used as input to determine the temperature dependence of the magnetization and TcT_\mathrm{c} of the SGSs. We find that the TcT_\mathrm{c} of all compounds is much above the room temperature. The calculated magnetization curve for Mn2_2CoAl as well as the Curie temperature are in very good agreement with available experimental data. The present study is expected to pave the way for a deeper understanding of the magnetic properties of the inverse-Heusler-based SGSs and enhance the interest in these materials for application in spintronic and magnetoelectronic devices.Comment: Accepted for publ;ication in Physical Review

    Coercion-resistant Proxy Voting

    Get PDF
    In general, most elections follow the principle of equality, or as it came to be known, the principle of “one man – one vote”. However, this principle might pose difficulties for voters, who are not well informed regarding the particular matter that is voted on. In order to address this issue, a new form of voting has been proposed, namely proxy voting. In proxy voting, each voter has the possibility to delegate her voting right to another voter, so called proxy, that she considers a trusted expert on the matter. In this paper we propose an end-to-end verifiable Internet voting scheme, which to the best of our knowledge is the first scheme to address voter coercion in the proxy voting setting

    The host of the SN-less GRB 060505 in high resolution

    Full text link
    The spiral host galaxy of GRB 060505 at z=0.089 was the site of a puzzling long duration burst without an accompanying supernova. Studies of the burst environment by Th\"one et al. (2008) suggested that this GRB came from the collapse of a massive star and that the GRB site was a region with properties different from the rest of the galaxy. We reobserved the galaxy in high spatial resolution using the VIMOS integral-field unit (IFU) at the VLT with a spaxel size of 0.67 arcsec. Furthermore, we use long slit high resolution data from HIRES/Keck at two different slit positions covering the GRB site, the center of the galaxy and an HII region next to the GRB region. We compare the properties of different HII regions in the galaxy with the GRB site and study the global and local kinematic properties of this galaxy. The resolved data show that the GRB site has the lowest metallicity in the galaxy with around 1/3 Z_solar, but its specific SFR (SSFR) of 7.4 M_solar/yr/L/L* and age (determined by the Halpha EW) are similar to other HII regions in the host. The galaxy shows a gradient in metallicity and SSFR from the bulge to the outskirts as it is common for spiral galaxies. This gives further support to the theory that GRBs prefer regions of higher star-formation and lower metallicity, which, in S-type galaxies, are more easily found in the spiral arms than in the centre. Kinematic measurements of the galaxy do not show evidence for large perturbations but a minor merger in the past cannot be excluded. This study confirms the collapsar origin of GRB060505 but reveals that the properties of the HII region surrounding the GRB were not unique to that galaxy. Spatially resolved observations are key to know the implications and interpretations of unresolved GRB hosts observations at higher redshifts.Comment: 15 pages, 16 figures, 6 tables; resubmitted to MNRAS after minor revision

    Lens magnification by CL0024+1654 in the U and R band

    Get PDF
    [ABRIDGED] We estimate the total mass distribution of the galaxy cluster CL0024+1654 from the measured source depletion due to lens magnification in the R band. Within a radius of 0.54Mpc/h, a total projected mass of (8.1+/-3.2)*10^14 M_sol/h (EdS) is measured, which corresponds to a mass- to-light ratio of M/L(B)=470+/-180. We compute the luminosity function of CL0024+1654 in order to estimate contamination of the background source counts from cluster galaxies. Three different magnification-based reconstruction methods are employed using both local and non-local techniques. We have modified the standard single power-law slope number count theory to incorporate a break and applied this to our observations. Fitting analytical magnification profiles of different cluster models to the observed number counts, we find that the cluster is best described either by a NFW model with scale radius r_s=334+/-191 kpc/h and normalisation kappa_s=0.23+/-0.08 or a power-law profile with slope xi=0.61+/-0.11, central surface mass density kappa_0=1.52+/-0.20 and assuming a core radius of r_core=35 kpc/h. The NFW model predicts that the cumulative projected mass contained within a radius R scales as M(<R)=2.9*10^14*(R/1')^[1.3-0.5lg (R/1')] M_sol/h. Finally, we have exploited the fact that flux magnification effectively enables us to probe deeper than the physical limiting magnitude of our observations in searching for a change of slope in the U band number counts. We rule out both a total flattening of the counts with a break up to U_AB<=26.6 and a change of slope, reported by some studies, from dlog N/dm=0.4->0.15 up to U_AB<=26.4 with 95% confidence.Comment: 19 pages, 12 figures, submitted to A&A. New version includes more robust U band break analysis and contamination estimates, plus new plot

    Tuning the Curie temperature of FeCo compounds by tetragonal distortion

    Full text link
    Combining density-functional theory calculations with a classical Monte Carlo method, we show that for B2-type FeCo compounds tetragonal distortion gives rise to a strong reduction of the Curie temperature TCT_{\mathrm{C}}. The TCT_{\mathrm{C}} monotonically decreases from 1575 K (for c/a=1c/a=1) to 940 K (for c/a=\sqrtwo). We find that the nearest neighbor Fe-Co exchange interaction is sufficient to explain the c/ac/a behavior of the TCT_{\mathrm{C}}. Combination of high magnetocrystalline anisotropy energy with a moderate TCT_{\mathrm{C}} value suggests tetragonal FeCo grown on the Rh substrate with c/a=1.24c/a=1.24 to be a promising material for heat-assisted magnetic recording applications.Comment: 4 pages, 2 figure

    Cast-as-Intended Mechanism with Return Codes Based on PETs

    Full text link
    We propose a method providing cast-as-intended verifiability for remote electronic voting. The method is based on plaintext equivalence tests (PETs), used to match the cast ballots against the pre-generated encrypted code tables. Our solution provides an attractive balance of security and functional properties. It is based on well-known cryptographic building blocks and relies on standard cryptographic assumptions, which allows for relatively simple security analysis. Our scheme is designed with a built-in fine-grained distributed trust mechanism based on threshold decryption. It, finally, imposes only very little additional computational burden on the voting platform, which is especially important when voters use devices of restricted computational power such as mobile phones. At the same time, the computational cost on the server side is very reasonable and scales well with the increasing ballot size

    The Radio Afterglow and Host Galaxy of the Dark GRB 020819

    Full text link
    Of the fourteen gamma-ray bursts (GRBs) localized to better than 2' radius with the SXC on HETE-2, only two lack optical afterglow detections, and the high recovery rate among this sample has been used to argue that the fraction of truly dark bursts is ~10%. While a large fraction of earlier dark bursts can be explained by the failure of ground-based searches to reach appropriate limiting magnitudes, suppression of the optical light of these SXC dark bursts seems likely. Here we report the discovery and observation of the radio afterglow of GRB 020819, an SXC dark burst, which enables us to identify the likely host galaxy (probability of 99.2%) and hence the redshift (z=0.41) of the GRB. The radio light curve is qualitatively similar to that of several other radio afterglows, and may include an early-time contribution from the emission of the reverse shock. The proposed host is a bright R = 19.5 mag barred spiral galaxy, with a faint R ~ 24.0 mag "blob'' of emission, 3" from the galaxy core (16 kpc in projection), that is coincident with the radio afterglow. Optical photometry of the galaxy and blob, beginning 3 hours after the burst and extending over more than 100 days, establishes strong upper limits to the optical brightness of any afterglow or associated supernova. Combining the afterglow radio fluxes and our earliest R-band limit, we find that the most likely afterglow model invokes a spherical expansion into a constant-density (rather than stellar wind-like) external environment; within the context of this model, a modest local extinction of A_V ~ 1 mag is sufficient to suppress the optical flux below our limits.Comment: 7 pages, 2 figures. ApJ, in press. For more info on dark bursts, see http://www.astro.ku.dk/~pallja/dark.htm

    Diversity of multiwavelength emission bumps in the GRB 100219A afterglow

    Full text link
    Context. Multi-wavelength observations of gamma-ray burst (GRB) afterglows provide important information about the activity of their central engines and their environments. In particular, the short timescale variability, such as bumps and/or rebrightening features visible in the multi-wavelength light curves, is still poorly understood. Aims. We analyze the multi-wavelength observations of the GRB100219A afterglow at redshift 4.7. In particular, we attempt to identify the physical origin of the late achromatic flares/bumps detected in the X-ray and optical bands. Methods. We present ground-based optical photometric data and Swift X-ray observations on GRB100219A. We analyzed the temporal behavior of the X-ray and optical light curves, as well as the X-ray spectra. Results. The early flares in the X-ray and optical light curves peak simultaneously at about 1000 s after the burst trigger, while late achromatic bumps in the X-ray and optical bands appear at about 20000 s after the burst trigger. These are uncommon features in the afterglow phenomenology. Considering the temporal and spectral properties, we argue that both optical and X-ray emissions come from the same mechanism. The late flares/bumps may be produced by late internal shocks from long-lasting activity of the central engine. An off-axis origin for a structured jet model is also discussed to interpret the bump shapes. The early optical bump can be interpreted as the afterglow onset, while the early X-ray flare could be caused by the internal activity. GRB 100219A exploded in a dense environment as revealed by the strong attenuation of X-ray emission and the optical-to-X-ray spectral energy distribution.Comment: A&A accepte

    Subspace-based Fundamental Frequency Estimation

    Get PDF
    Publication in the conference proceedings of EUSIPCO, Viena, Austria, 200
    • …
    corecore