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ABSTRACT
In this paper, we present a subspace-based fundamental fre-
quency estimator based on an extension of the MUSIC spec-
tral estimator. A noise subspace is obtained from the eigen-
value decomposition of the estimated sample covariance ma-
trix and fundamental frequency candidates are selected as the
frequencies where the harmonic signal subspace is closest to
being orthogonal to the noise subspace. The performance of
the proposed method is evaluated and compared to that of
the non-linear least-squares (NLS) estimator and the corre-
sponding Cramér-Rao bound; it is concluded that the pro-
posed method has good statistical performance at a lower
computational cost than the statistically efficient NLS esti-
mator.

1. INTRODUCTION

The problem of estimating the fundamental frequency of a
periodic signal is a classical problem in signal processing,
and throughout the years many different solutions have been
suggested to solve it. It is encountered in such applications
as, for instance, coding of speech and audio, automatic music
transcription and determination of rotating targets in radar.
The problem of fundamental frequency estimation can be
stated as follows; consider a harmonic signal with the fun-
damental frequency ω0 that is corrupted by an additive white
complex circularly symmetric Gaussian noise, w(n), i.e.,

x(n) =
L

∑
l=1

Ale
j(ω0ln+φl) +w(n), n = 0, . . . ,N −1 (1)

where Al and φl are the (real-valued) amplitude and the phase
of the l’th harmonic, respectively. The problem considered in
this paper amounts to estimating the fundamental frequency
ω0 from a set of N measured samples, x(n). Note that the
complex-valued signal model in (1) can also be applied to
real-valued signals, when there is little or no spectral con-
tents of interest in the frequencies near 0 and π , by the use
of the discrete-time “analytical” signal [1]. The classical
fundamental frequency estimators are typically time-domain
techniques based on auto-correlation, cross-correlation, the
average magnitude difference function (AMDF), or average
squared difference function (ASDF). For a historical review
of these methods, we refer to [2, 3], and for examples of more
recent work we refer to [4, 5, 6]. While subspace techniques,
such as the MUltiple SIgnal Classification (MUSIC) algo-
rithm [7], have a rich history in spectral analysis in general,
they have only rarely been used in fundamental frequency
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estimation. In [6, 8], MUSIC is used for finding the individ-
ual harmonics independently, and in [9], a noise estimate is
obtained from MUSIC and used in a cepstral pitch estimator.
In this paper, we propose an extension of the classical MU-
SIC algorithm by imposing the assumed harmonic structure
in (1) on the MUSIC criterion. The paper is organized as fol-
lows. In Section 2, the covariance matrix model of the signal
model (1) is presented along with some definitions. Then, in
Section 3, we present the proposed fundamental frequency
estimator termed the harmonically constrained MUSIC esti-
mator. In Section 4, some numerical results are presented
and, finally, Section 5 concludes on the work.

2. COVARIANCE MATRIX MODEL

In this section, we present the covariance matrix model and
introduce some useful vector and matrix definitions before
we proceed to discuss the proposed extension. By assuming
that the phases of the harmonics are independent and uni-
formly distributed in the interval [−π,π], the covariance ma-
trix R ∈ C

M×M can be written as [10]

R = E
{
x̃(n)x̃H(n)

}
= A(ω0)PAH(ω0)+σ2

wI, (2)

where E{·} denotes the statistical expectation, (·)H the con-
jugate transpose, and x̃(n) is a signal vector containing M
samples of the observed signal, i.e.,

x̃(n) = [ x(n) x(n−1) · · · x(n−M +1) ]T , (3)

with (·)T denoting the transpose. Further,

P = diag
([

A2
1 · · · A2

L

])
(4)

and the full rank Vandermonde matrix A(ω0) ∈ C
M×L is de-

fined as

A(ω0) = [ a(ω0) · · · a(ω0L) ] , (5)

where

a(ω) =
[

1 e− jω · · · e− jω(M−1)
]T

. (6)

Also, σ2
w denotes the variance of the additive noise, w(n), and

I is the M×M identity matrix. We note that

rank
(
A(ω0)PAH(ω0)

)
= L, (7)

and that the number of harmonics in A(ω0) is bounded by

L =
⌊

ωmax

ω0

⌋
, (8)



where ωmax may go up to π for real signals, although it is typ-
ically well below this. This is, for example, the case for audio
sampled at 44.1 kHz or speech signals sampled at 16 kHz.
Here, the constant M ≥ L + 1 is a user parameter that deter-
mines the accuracy of the resulting MUSIC frequency esti-
mator, with larger M yielding increasing resolution. Thus,
M should be selected as large as possible while still allowing
for a reliable estimate of the covariance matrix [10].

3. THE HARMONIC MUSIC ALGORITHM

The MUSIC algorithm [7, 11] (see also [12]) is based on the
eigenvalue decomposition (EVD) of the covariance matrix
R, exploiting the structure in (2). Let

R = UΛUH (9)

where U is formed from the M orthonormal eigenvectors of
R, i.e.,

U = [ u1 · · · uM ] , (10)

and Λ is a diagonal matrix with the eigenvalues, λk, on the
diagonal. The following decomposition requires a priori
knowledge of the number of harmonic components, L. Here,
we will instead determine L using (8), and as a result this
L will be frequency dependent; hereafter, we will use the
notation L(ω0) to stress this dependence. Now, let G(ω0)
be formed from the M − L(ω0) eigenvectors corresponding
to the M − L(ω0) least significant eigenvalues (G(ω0) is a
function of ω0 through L(ω0)), i.e.,

G(ω0) =
[

uL(ω0)+1 · · · uM

]
. (11)

Then, it can be shown that the noise subspace spanned by
G(ω0) will be orthogonal to the Vandermonde matrix A(ω0)
spanned by the L harmonic sinusoids [10], i.e.,

AH(ω0)G(ω0) = 0. (12)

We stress that where A is a function of the set of frequencies
{ωl}L

l=1 in MUSIC, it is here only a function of the funda-
mental frequency ω0 as the frequencies of the harmonics are
given by ωl = ω0l. As R is typically unknown, one needs to
form an estimate of it; here, we estimate the sample covari-
ance matrix as

R̂ =
1
N

N

∑
n=M

x̃(n)x̃H(n). (13)

and note that the orthogonality in (12) will only hold approx-
imately for the eigenvectors found from this matrix. Exploit-
ing the harmonic structure in (1), the estimated fundamental
frequency can be found as

argmin
ω0

‖AH(ω0)G(ω0)‖F , (14)

where ‖ · ‖F denotes the Frobenius norm. By the Cauchy-
Schwarz inequality, we have that

‖AH(ω0)G(ω0)‖F ≤ ‖AH(ω0)‖F‖G(ω0)‖F . (15)

As the M −L(ω0) columns of G(ω0) are orthonormal, and
all the L(ω0) columns of A(ω0) have norm

√
M, we get

‖AH(ω0)G(ω0)‖F ≤
√

L(ω0)M
√

M−L(ω0) (16)

and thus
‖AH(ω0)G(ω0)‖F√
L(ω0)M(M−L(ω0))

≤ 1. (17)

We now define the harmonic pseudo-spectrum as

P(ω0) =
L(ω0)M(M−L(ω0))
‖AH(ω0)G(ω0)‖2

F

, (18)

and find the estimated fundamental frequency as

ω̂0 = arg max
ω0∈Ω0

P(ω0). (19)

Thus, the fundamental frequency candidates can be found
from (18) by sweeping ω0 over a finite set of frequencies Ω0
and then project the harmonic subspace onto the noise sub-
space. In the rest of this paper, we refer to this estimator as
the harmonically constrained MUSIC or HMUSIC in short.
The algorithm can be summarized as the following steps:

1. Estimate R̂ using (13).

2. Perform an EVD of R̂.
3. For each ω0 ∈ Ω0,

(a) Determine L(ω0) from (8).
(b) Construct A(ω0) using (5), and G(ω0) using (11).
(c) Compute P(ω0) using (18).

4. Find fundamental frequency candidates as the maxima of
P(ω0).

We note that it is possible to use a noise subspace with a fixed
dimension by estimating an upper bound on L. For example,
in speech the fundamental frequency is typically limited to
the range 60 Hz - 400 Hz, which would result in an upper
bound of the dimension of the signal subspace

L =
⌊

ωmax fs
2π60

⌋
, (20)

with fs being the sampling frequency. In our experience, the
peaks of the harmonic pseudo-spectra computed using a fixed
L are often more distinct and thus appear less noisy compared
to the variable dimension approach, but the latter seems to
give a better response at low frequencies.

A classical problem in fundamental frequency estimation
is erroneous estimates at k or 1/k times the true fundamental
frequency for k = 2,3, . . ., commonly referred to as doublings
and halvings. These problems also exist in HMUSIC. Espe-
cially, doublings of the fundamental occur, because A(kω0),
for k = 2,3, . . ., is spanned by the column space of A(ω0) and
these columns are thus also orthogonal to the noise subspace
when this is kept fixed. This is less of a problem for variable
dimension noise subspace. Halvings of the fundamental fre-
quency also occur, but these are generally much weaker than
the doublings as only a subset of the harmonics will be or-
thogonal to the noise subspace. In order to build a practical
fundamental frequency estimator from HMUSIC, we need to
limit the search space Ω0 of ω0 to some interval that does not
include doublings and halvings. This can, for example, be
achieved by pitch tracking, some coarse initial estimate, or
by some post-processing of the harmonic pseudo-spectrum.
In this paper, we defer from any further discussion of this
and instead concentrate on the statistical performance of the
estimator.



4. EXPERIMENTAL RESULTS

4.1 Reference Methods

For reference, we use a non-linear least-squares (NLS) fun-
damental frequency estimator similar to that of [6]. This is
a particularly simple version of the NLS frequency estima-
tor (see, e.g., [10]) because of the harmonic relation between
the sinusoidal components. As is well known, the NLS fre-
quency estimator is statistically efficient under white noise
conditions; furthermore, it can be shown that the NLS esti-
mator is asymptotically efficient also for the coloured noise
case [13]. We note that the NLS fundamental frequency es-
timator can be stated as the minimizer of the squared error
between the signal and the harmonic sinusoidal model, and
be found by sweeping over a finite set Ω0 of frequencies.
Here, we use the same grid as in HMUSIC. We refer to this
method as harmonically constrained NLS (HNLS). While
the HMUSIC gives strong false peaks at integer multiples
of the fundamental frequency, the HNLS estimator is very
prone to halvings (1/k with k = 2,3, . . .) because a funda-
mental frequency of 0.5ω0 will capture more signal energy
than the true fundamental, especially under noisy conditions.
Thus, like the HMUSIC, we need to limit the search range
Ω0 in order to get the correct result. For each grid point in
Ω0, HNLS is computationally more complex than HMUSIC
as HNLS involves a matrix inversion and matrix products
whereas HMUSIC involves only a matrix product for each
frequency point. There is, however, some additional compu-
tational overhead associated with HMUSIC as it requires the
calculation of the sample covariance matrix and an EVD. As
the resolution of the grid increases, the relative influence of
this overhead decreases. As an additional reference, we also
use spectral MUSIC [7, 11] on the same grid as HMUSIC
and HNLS to locate the frequency of the first harmonic. This
method does not take the harmonic structure of the spectrum
into account.

4.2 Speech Signal

In this section, we show harmonic pseudo-spectra of a speech
signal (female speaker, sampled at 8 kHz) and illustrate the
difference between using a fixed dimensional noise subspace
and a variable dimensional one. In Figure 1(b), the harmonic
pseudo-spectrum of the segment of voiced speech in Figure
1(a) is depicted. This pseudo-spectrum has been calculated
using a fixed noise subspace in the sweep over ω0. It can be
seen that the fundamental frequency stands out very clearly at
approximately 159 Hz and that the double is very noticeably
present at 318 Hz. As a comparison, the harmonic pseudo-
spectrum with a variable dimension noise subspace is shown
in Figure 1(c), clearly illustrating the reduced risk for a pitch-
doubling. It can also be seen that the peaks of Figure 1(b) are
more distinct compared to the noise floor than those of 1(c).

4.3 Synthetic Signals

To investigate the statistical efficiency of HMUSIC, we per-
form an evaluation of the fundamental frequency estimator
on a synthetic signal using a technique similar to those of
[6, 14]. As a comparison, we also show the asymptotic
Cramér-Rao bound (CRB) as derived in [14]. First, we inves-
tigate the effects of varying SNR for a fixed segment length.
The SNR is defined as SNR = 10log10(σ

2
s /σ2

w), with σ2
s be-

ing the variance of the sinusoidal part of (1) and σ2
w being
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Figure 1: (a) Voiced speech segment, (b) harmonic pseudo-
spectrum of speech segment using a fixed noise subspace,
and (c) using a variable dimension subspace.

the variance of the noise. In Figure 2, the standard devision
of MUSIC, HNLS, HMUSIC and the CRB are shown as a
function of the SNR for a segment length of 256 samples.
These were found by 200 Monte Carlo simulations, where in
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Figure 2: Standard deviation of the estimates ω̂0 and the CRB
for varying SNR for N = 256.

each run the additive noise sequence and the phases of the
harmonics have been randomized. A fundamental frequency
of ω0 = 2π0.08 (corresponding to 640 Hz at 8 kHz sampling
frequency) was used in all simulations. Five real harmonics
(L = 10) were used, all with an amplitude of 1, and the step-
size of the grid searches of MUSIC, HNLS and HMUSIC
was set to 0.01 Hz. Further, Ω0 was constrained to be in the
vicinity of ω0 by ±10%, and M was set to 128.

The effects of varying segment lengths, N, for a fixed
SNR have also been investigated. The results are shown in
Figure 3 for an SNR of 10 dB. Here a stepsize of 0.1 Hz was
used and the dimensions of the sample covariance matrix was
set to M = �N/2�. Note that the HMUSIC and MUSIC al-
gorithms are sensitive to the choice of M relative to N. From
these figures, it can be seen that HMUSIC has very good
statistical performance approaching the Cramér-Rao bound.
From observing the performance of HMUSIC compared to
MUSIC, it can also be seen that there is a big gain in taking
the harmonic structure into account in the estimation.

5. CONCLUSION

In this paper, a subspace-based fundamental frequency esti-
mator has been proposed. This estimator is based on a har-
monic extension of the classical MUSIC estimator, letting
the dimensionality of the noise signal subspace depend on
the underlying fundamental frequency. The resulting estima-
tor is obtained by sweeping over a set of frequencies. The
performance of the estimator has been evaluated and com-
pared to both the non-linear least-squares estimator, the clas-
sical MUSIC algorithm, and the Cramér-Rao bound. From
the simulations, we conclude that the estimator has good sta-
tistical performance at a computational complexity, which is
lower than the nonlinear least-squares for high resolutions.
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