71 research outputs found

    Environmental dynamics, correlations, and the emergence of noncanonical equilibrium states in open quantum systems

    Full text link
    Quantum systems are invariably open, evolving under surrounding influences rather than in isolation. Standard open quantum system methods eliminate all information on the environmental state to yield a tractable description of the system dynamics. By incorporating a collective coordinate of the environment into the system Hamiltonian, we circumvent this limitation. Our theory provides straightforward access to important environmental properties that would otherwise be obscured, allowing us to quantify the evolving system-environment correlations. As a direct result, we show that the generation of robust system-environment correlations that persist into equilibrium (heralded also by the emergence of non-Gaussian environmental states) renders the canonical system steady-state almost always incorrect. The resulting equilibrium states deviate markedly from those predicted by standard perturbative techniques and are instead fully characterised by thermal states of the mapped system-collective coordinate Hamiltonian. We outline how noncanonical system states could be investigated experimentally to study deviations from canonical thermodynamics, with direct relevance to molecular and solid-state nanosystems.Comment: 10 pages, 4 figures, close to published versio

    Quantum correlations of light and matter through environmental transitions

    Get PDF
    One aspect of solid-state photonic devices that distinguishes them from their atomic counterparts is the unavoidable interaction between system excitations and lattice vibrations of the host material. This coupling may lead to surprising departures in emission properties between solid-state and atomic systems. Here we predict a striking and important example of such an effect. We show that in solid-state cavity quantum electrodynamics, interactions with the host vibrational environment can generate quantum cavity-emitter correlations in regimes that are semiclassical for atomic systems. This behaviour, which can be probed experimentally through the cavity emission properties, heralds a failure of the semiclassical approach in the solid-state, and challenges the notion that coupling to a thermal bath supports a more classical description of the system. Furthermore, it does not rely on the spectral details of the host environment under consideration and is robust to changes in temperature. It should thus be of relevance to a wide variety of photonic devices.Comment: 8 pages, 7 figures. v2 - minor edits. v3 - more substantial edits to the text. Title changed and new results on correlations added in Fig. 3. v4 - close to published version, presentation clarifie

    Environmental Nonadditivity and Franck-Condon physics in Nonequilibrium Quantum Systems

    Get PDF
    We show that for a quantum system coupled to both vibrational and electromagnetic environments, enforcing additivity of their combined influences results in non-equilibrium dynamics that does not respect the Franck-Condon principle. We overcome this shortcoming by employing a collective coordinate representation of the vibrational environment, which permits the derivation of a non-additive master equation. When applied to a two-level emitter our treatment predicts decreasing photon emission rates with increasing vibrational coupling, consistent with Franck-Condon physics. In contrast, the additive approximation predicts the emission rate to be completely insensitive to vibrations. We find that non-additivity also plays a key role in the stationary non-equilibrium model behaviour, enabling two-level population inversion under incoherent electromagnetic excitation.Comment: 9 pages (including supplementary information), 4 figures. V2 - minor clarifications to main text and new section in the supplemen

    Few-photon Transport in Fano-resonance waveguide geometries

    Full text link
    We present a theoretical study of Fano interference effects in few-photon transport. Under appropriate conditions, a local defect in an optical waveguide induces a highly asymmetric transmission lineshape, characteristic of Fano interference. For a two-level emitter placed adjacent to such a defect, here modeled as a partially transmitting element, we find an analytical expression for the full time evolution of single-photon wavepackets and the emitter excitation probability. We show how the partially transmitting element affects the emitter lifetime and shifts the spectral position of the effective system resonances. Using input-output formalism, we determine the single and two-photon S S -matrices for both a two-level emitter and a cavity-emitter system coupled to a waveguide with a partially transmitting element. We show how the Fano interference effect can be exploited for the implementation of a Hong-Ou-Mandel switch in analogy with a tunable linear or nonlinear beam splitter.Comment: 19 pages (incl. a 6 pages long appendix), 5 figure

    Quantum work statistics at strong reservoir coupling

    Full text link
    Calculating the stochastic work done on a quantum system while strongly coupled to a reservoir is a formidable task, requiring the calculation of the full eigenspectrum of the combined system and reservoir. Here we show that this issue can be circumvented by using a polaron transformation that maps the system into a new frame where weak-coupling theory can be applied. It is shown that the work probability distribution is invariant under this transformation, allowing one to compute the full counting statistics of work at strong reservoir coupling. Crucially this polaron approach reproduces the Jarzynski fluctuation theorem, thus ensuring consistency with the laws of stochastic thermodynamics. We apply our formalism to a system driven across the Landau-Zener transition, where we identify clear signatures in the work distribution arising from a non-negligible coupling to the environment. Our results provide a new method for studying the stochastic thermodynamics of driven quantum systems beyond Markovian, weak-coupling regimes.Comment: 15 pages, 3 figures, comments welcom

    Signatures of Non-Markovianity in Cavity-QED with Color Centers in 2D Materials

    Full text link
    Light-matter interactions of defects in two dimensional materials are expected to be profoundly impacted by strong coupling to phonons. In this work, we combine ab initio calculations of a defect in hBN, with a fully quantum mechanical and numerically exact description of a cavity-defect system to elucidate this impact. We show that even at weak light-matter coupling, the dynamical evolution of the cavity-defect system has clear signatures of non-markovian phonon effects, and that linear absorption spectra show the emergence of hybridised light-matter-phonon states in regimes of strong light-matter coupling. We emphasise that our methodology is general, and can be applied to a wide variety of material/defect systems.Comment: 7 pages, 3 figures + 8 pages supplemen

    Energy transfer in structured and unstructured environments: Master equations beyond the Born-Markov approximations

    Get PDF
    We explore excitonic energy transfer dynamics in a molecular dimer system coupled to both structured and unstructured oscillator environments. By extending the reaction coordinate master equation technique developed by Iles-Smith et al. [Phys. Rev. A 90, 032114 (2014)], we go beyond the commonly used Born-Markov approximations to incorporate system-environment correlations and the resultant non-Markovian dynamical effects. We obtain energy transfer dynamics for both underdamped and overdamped oscillator environments that are in perfect agreement with the numerical hierarchical equations of motion over a wide range of parameters. Furthermore, we show that the Zusman equations, which may be obtained in a semiclassical limit of the reaction coordinate model, are often incapable of describing the correct dynamical behaviour. This demonstrates the necessity of properly accounting for quantum correlations generated between the system and its environment when the Born-Markov approximations no longer hold. Finally, we apply the reaction coordinate formalism to the case of a structured environment comprising of both underdamped (i.e., sharply peaked) and overdamped (broad) components simultaneously. We find that though an enhancement of the dimer energy transfer rate can be obtained when compared to an unstructured environment, its magnitude is rather sensitive to both the dimer-peak resonance conditions and the relative strengths of the underdamped and overdamped contributions

    Driving-induced population trapping and linewidth narrowing via the quantum Zeno effect

    Get PDF
    We investigate the suppression of spontaneous emission from a driven three-level system embedded in an optical cavity via a manifestation of the quantum Zeno effect. Strong resonant coupling of the lower two levels to an external optical field results in a decrease of the exponential decay rate of the third upper level. We show that this effect has observable consequences in the form of emission spectra with subnatural linewidths, which should be measurable using, for example, quantum dot--cavity systems in currently obtainable parameter regimes. These results constitute a novel method to control an inherently irreversible and dissipative process, and may be useful in applications requiring the control of single photon arrival times and wavepacket extent

    Exact quantum dynamics in structured environments

    Get PDF
    Funding: DG and DK acknowledge studentship funding from EPSRC under grant no. EP/L015110//1. AS acknowledges a studentship from EPSRC under grant no. EP/L505079/1. J.I.-S. acknowledges support from the Royal Commission for the Exhibition of 1851. AN acknowledges funding from EPSRC under grant no. EP/N008154/1.The dynamics of a wide range of technologically important quantum systems are dominated by their interaction with just a few environmental modes. Such highly structured environments give rise to long-lived bath correlations that induce complex dynamics which are very difficult to simulate. These difficulties are further aggravated when spatial correlations between different parts of the system are important. By modeling the dynamics of a pair of two-level quantum systems in a common, structured, environment we show that a recently developed general purpose numerical approach, the time-evolving matrix product operator, is capable of accurate simulation under exactly these conditions. We find that tuning the separation to match the wavelength of the dominant environmental modes can drastically modify the system dynamics. To further explore this behavior, we show that the full dynamics of the bath can be calculated directly from those of the system, thus allowing us to develop intuition for the complex dynamics observed.Publisher PDFPeer reviewe

    Protocol for generating multiphoton entangled states from quantum dots in the presence of nuclear spin fluctuations

    Get PDF
    Multi-photon entangled states are a crucial resource for many applications in quantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confined electron spin, but dephasing caused by the host nuclear spin environment typically limits coherence (and hence entanglement) between photons to the spin T2T_2^* time of a few nanoseconds. We propose a protocol for the deterministic generation of multi-photon entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning that coherence and entanglement is instead limited only by the much longer spin T2T_2 time of microseconds. Unlike previous protocols, the present scheme allows for the generation of very low error probability polarisation encoded three-photon GHZ states and larger entangled states, without the need for spin echo or nuclear spin calming techniques
    corecore