75 research outputs found

    Selenium in storage proteins of wheat cultivated on selenium impacted soils of Punjab, India

    Get PDF
    Wheat, an important staple cereal crop cultivated in seleniferous region of India, noted to accumulated significantly high concentrations of Se, was examined for the distribution of selenium in various protein fractions of the grains. Amongst the protein fractions, Se was dominantly (33–37%) present in the albumin fraction in Se rich grains followed by other fractions viz., globulin (20–25%), glutelin (20–25%), and prolamin (17–20%). The observations are important in context of exploring the use of this material as functional foods in formulating Se-enriched diets for Se-deficient population

    Genetic variability of kernel provitamin-A in sub-tropically adapted maize hybrids possessing rare allele of β-carotene hydroxylase

    Get PDF
    Vitamin-A deficiency is a major health concern. Traditional yellow maize possesses low provitamin-A (proA). Mutant crtRB1 gene significantly enhances proA. 24 experimental hybrids possessing crtRB1 allele were evaluated for β-carotene (BC), β-cryptoxanthin (BCX), lutein (LUT), zeaxanthin (ZEA), total carotenoids (TC) and grain yield at multi-locations. BC (0.64–17.24 µg/g), BCX (0.45–6.84 µg/g), proA (0.86–20.46 µg/g), LUT (9.60–31.03 µg/g), ZEA (1.24–12.73 µg/g) and TC (20.60–64.02 µg/g) showed wide variation. No significant genotype × location interaction was observed for carotenoids. The mean BC (8.61 µg/g), BCX (4.04 µg/g) and proA (10.63 µg/g) in crtRB1-based hybrids was significantly higher than normal hybrids lacking crtRB1-favourable allele (BC: 1.73 µg/g, BCX: 1.29 µg/g and proA: 2.37 µg/g). Selected crtRB1-based hybrids possessed 33% BC and 40% BCX compared to 6% BC and 5% BCX in normal hybrids. BC showed positive correlation with BCX (r = 0.90), proA (r = 0.99) and TC (r = 0.64) among crtRB1-based hybrids. Carotenoids didn't show association with grain yield. Average yield potential of proA rich hybrids (6794 kg/ha) was at par with normal hybrids (6961 kg/ha). PROAH-13, PROAH-21, PROAH-17, PROAH-11, PROAH-23, PROAH-24 and PROAH-3 were the most promising with >12 µg/g proA and >6000 kg/ha grain yield. The newly identified crtRB1-based hybrids assume significance in alleviating malnutrition

    Assessing host range, symbiotic effectiveness, and photosynthetic rates induced by native soybean rhizobia isolated from Mozambican and south African soils

    Get PDF
    Article purchasedHost range and cross-infectivity studies are important for identifying rhizobial strains with potential for use as inoculants. In this study, 10 native soybean rhizobia isolated from Mozambican and South African soils were evaluated for host range, symbiotic effectiveness and ability to induce high rates of photosynthesis leading to enhanced plant growth in cowpea (Vigna unguiculata L. Walp.), Bambara groundnut (Vigna subterranean L. Verdc.), Kersting’s groundnut (Macrotyloma geocarpum Harm) and soybean (Glycine max L. Merr). The test isolates had different growth rates and colony sizes. Molecular analysis based on enterobacterial repetitive intergenic consensus (ERIC)-PCR revealed high genetic diversity among the test isolates. The results further showed that isolate TUTLBC2B failed to elicit nodulation in all test plants, just as TUTNSN2A and TUTDAIAP3B were also unable to nodulate cowpea, Kersting’s bean and Bambara groundnut. Although the remaining strains formed ineffective nodules on cowpea and Kersting’s bean, they induced effective nodules on Bambara groundnut and the two soybean genotypes. Bacterial stimulation of nodule numbers, nodule dry weights and photosynthetic rates was generally greater with isolates TUTRSRH3A, TUTM19373A, TUTMCJ7B, TUTRLR3B and TUTRJN5A. As a result, these isolates elicited significantly increased accumulation of biomass in shoots and whole plants of Bambara groundnut and the two soybean genotypes. Whole-plant symbiotic nitrogen (N) of soybean and Bambara groundnut was highest for the commercial strains CB756 and WB74, as well as for TUTRLR3B, TUTMCJ7B and TUTRSRH3A, suggesting that the three native rhizobial isolates have potential for use as inoculants

    Quality Infrastructure of National Metrology Institutes: A Comparative Study

    Get PDF
    Each country has its own system of Quality Infrastructure (QI) developed for the effective operations, management, regulations, control of national trade, international exchanges of goods & collaborations and recognition of their products and services to enable them to enter into the global market. These QI systems consist of national governments, civic, public and private institutions, organizations, boards, associations, forums, scientific societies, federations industries etc. These agencies work in coordination and with synergy to formulate, suggest, execute, disseminate and implement, as per their relevant responsibilities; the national policies, procedures; guidelines, legal & regulatory structure, and good practices to support and strengthen the quality for safe & environmentally friendly products, services, and processes. It relies on metrology, standardization, accreditation, and conformity assessment. Several countries have strong QI, and accordingly, have proper industrial and economic growth. On the contrary, some of the countries lack the necessary infrastructure to meet the quality standards, and as a result, they face problems and challenges in this competitive world. This paper describes the essential components of stronger International Quality Infrastructure (IQI) and the National Quality Infrastructure (NQI). A comparative study carried out on the NQIs of 9 leading countries is also discussed. A comparative study on the Global Quality Infrastructure Index (GQII) of the top 10 economies is also included. Admittedly, though utmost care is taken to accommodate most relevant information, some of the unnoticed discrepancies are not ruled out, which may be unintentional. It is hoped that this paper would be useful for students, researchers, academicians, scientists, metrologists, quality experts, administrators, and policymakers as an information bank on NQIs and GQIIs of several countries

    Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells

    Get PDF
    The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, creates an urgent need for identifying molecular mechanisms that mediate viral entry, propagation, and tissue pathology. Cell membrane bound angiotensin-converting enzyme 2 (ACE2) and associated proteases, transmembrane protease serine 2 (TMPRSS2) and Cathepsin L (CTSL), were previously identified as mediators of SARS-CoV2 cellular entry. Here, we assess the cell type-specific RNA expression of ACE2, TMPRSS2, and CTSL through an integrated analysis of 107 single-cell and single-nucleus RNA-Seq studies, including 22 lung and airways datasets (16 unpublished), and 85 datasets from other diverse organs. Joint expression of ACE2 and the accessory proteases identifies specific subsets of respiratory epithelial cells as putative targets of viral infection in the nasal passages, airways, and alveoli. Cells that co-express ACE2 and proteases are also identified in cells from other organs, some of which have been associated with COVID-19 transmission or pathology, including gut enterocytes, corneal epithelial cells, cardiomyocytes, heart pericytes, olfactory sustentacular cells, and renal epithelial cells. Performing the first meta-analyses of scRNA-seq studies, we analyzed 1,176,683 cells from 282 nasal, airway, and lung parenchyma samples from 164 donors spanning fetal, childhood, adult, and elderly age groups, associate increased levels of ACE2, TMPRSS2, and CTSL in specific cell types with increasing age, male gender, and smoking, all of which are epidemiologically linked to COVID-19 susceptibility and outcomes. Notably, there was a particularly low expression of ACE2 in the few young pediatric samples in the analysis. Further analysis reveals a gene expression program shared by ACE2(+)TMPRSS2(+) cells in nasal, lung and gut tissues, including genes that may mediate viral entry, subtend key immune functions, and mediate epithelial-macrophage cross-talk. Amongst these are IL6, its receptor and co-receptor, IL1R, TNF response pathways, and complement genes. Cell type specificity in the lung and airways and smoking effects were conserved in mice. Our analyses suggest that differences in the cell type-specific expression of mediators of SARS-CoV-2 viral entry may be responsible for aspects of COVID-19 epidemiology and clinical course, and point to putative molecular pathways involved in disease susceptibility and pathogenesis

    Genome-Wide Association Study for Type 2 Diabetes in Indians Identifies a New Susceptibility Locus at 2q21

    Get PDF
    Indians undergoing socioeconomic and lifestyle transitions will be maximally affected by epidemic of type 2 diabetes (T2D). We conducted a two-stage genome-wide association study of T2D in 12,535 Indians, a less explored but high-risk group. We identified a new type 2 diabetes–associated locus at 2q21, with the lead signal being rs6723108 (odds ratio 1.31; P = 3.32 3 1029 ). Imputation analysis refined the signal to rs998451 (odds ratio 1.56; P = 6.3 3 10212) within TMEM163 that encodes a probable vesicular transporter in nerve terminals. TMEM163 variants also showed association with decreased fasting plasma insulin and homeostatic model assessment of insulin resistance, indicating a plausible effect through impaired insulin secretion. The 2q21 region also harbors RAB3GAP1 and ACMSD; those are involved in neurologic disorders. Forty-nine of 56 previously reported signals showed consistency in direction with similar effect sizes in Indians and previous studies, and 25 of them were also associated (P , 0.05). Known loci and the newly identified 2q21 locus altogether explained 7.65% variance in the risk of T2D in Indians. Our study suggests that common susceptibility variants for T2D are largely the same across populations, but also reveals a population-specific locus and provides further insights into genetic architecture and etiology of T2D

    Nanoparticles for Applications in Cellular Imaging

    Get PDF
    In the following review we discuss several types of nanoparticles (such as TiO2, quantum dots, and gold nanoparticles) and their impact on the ability to image biological components in fixed cells. The review also discusses factors influencing nanoparticle imaging and uptake in live cells in vitro. Due to their unique size-dependent properties nanoparticles offer numerous advantages over traditional dyes and proteins. For example, the photostability, narrow emission peak, and ability to rationally modify both the size and surface chemistry of Quantum Dots allow for simultaneous analyses of multiple targets within the same cell. On the other hand, the surface characteristics of nanometer sized TiO2allow efficient conjugation to nucleic acids which enables their retention in specific subcellular compartments. We discuss cellular uptake mechanisms for the internalization of nanoparticles and studies showing the influence of nanoparticle size and charge and the cell type targeted on nanoparticle uptake. The predominant nanoparticle uptake mechanisms include clathrin-dependent mechanisms, macropinocytosis, and phagocytosis

    Mendelian randomization supports bidirectional causality between telomere length and clonal hematopoiesis of indeterminate potential

    Get PDF
    Human genetic studies support an inverse causal relationship between leukocyte telomere length (LTL) and coronary artery disease (CAD), but directionally mixed effects for LTL and diverse malignancies. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by expansion of hematopoietic cells bearing leukemogenic mutations, predisposes both hematologic malignancy and CAD. TERT (which encodes telomerase reverse transcriptase) is the most significantly associated germline locus for CHIP in genome-wide association studies. Here, we investigated the relationship between CHIP, LTL, and CAD in the Trans-Omics for Precision Medicine (TOPMed) program (n = 63,302) and UK Biobank (n = 47,080). Bidirectional Mendelian randomization studies were consistent with longer genetically imputed LTL increasing propensity to develop CHIP, but CHIP then, in turn, hastens to shorten measured LTL (mLTL). We also demonstrated evidence of modest mediation between CHIP and CAD by mLTL. Our data promote an understanding of potential causal relationships across CHIP and LTL toward prevention of CAD

    The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    BACKGROUND: Understanding the magnitude of cancer burden attributable to potentially modifiable risk factors is crucial for development of effective prevention and mitigation strategies. We analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 to inform cancer control planning efforts globally. METHODS: The GBD 2019 comparative risk assessment framework was used to estimate cancer burden attributable to behavioural, environmental and occupational, and metabolic risk factors. A total of 82 risk–outcome pairs were included on the basis of the World Cancer Research Fund criteria. Estimated cancer deaths and disability-adjusted life-years (DALYs) in 2019 and change in these measures between 2010 and 2019 are presented. FINDINGS: Globally, in 2019, the risk factors included in this analysis accounted for 4·45 million (95% uncertainty interval 4·01–4·94) deaths and 105 million (95·0–116) DALYs for both sexes combined, representing 44·4% (41·3–48·4) of all cancer deaths and 42·0% (39·1–45·6) of all DALYs. There were 2·88 million (2·60–3·18) risk-attributable cancer deaths in males (50·6% [47·8–54·1] of all male cancer deaths) and 1·58 million (1·36–1·84) risk-attributable cancer deaths in females (36·3% [32·5–41·3] of all female cancer deaths). The leading risk factors at the most detailed level globally for risk-attributable cancer deaths and DALYs in 2019 for both sexes combined were smoking, followed by alcohol use and high BMI. Risk-attributable cancer burden varied by world region and Socio-demographic Index (SDI), with smoking, unsafe sex, and alcohol use being the three leading risk factors for risk-attributable cancer DALYs in low SDI locations in 2019, whereas DALYs in high SDI locations mirrored the top three global risk factor rankings. From 2010 to 2019, global risk-attributable cancer deaths increased by 20·4% (12·6–28·4) and DALYs by 16·8% (8·8–25·0), with the greatest percentage increase in metabolic risks (34·7% [27·9–42·8] and 33·3% [25·8–42·0]). INTERPRETATION: The leading risk factors contributing to global cancer burden in 2019 were behavioural, whereas metabolic risk factors saw the largest increases between 2010 and 2019. Reducing exposure to these modifiable risk factors would decrease cancer mortality and DALY rates worldwide, and policies should be tailored appropriately to local cancer risk factor burden
    • …
    corecore