8,233 research outputs found
Universal thermal and electrical conductivity from holography
It is known from earlier work of Iqbal, Liu (arXiv:0809.3808) that the
boundary transport coefficients such as electrical conductivity (at vanishing
chemical potential), shear viscosity etc. at low frequency and finite
temperature can be expressed in terms of geometrical quantities evaluated at
the horizon. In the case of electrical conductivity, at zero chemical potential
gauge field fluctuation and metric fluctuation decouples, resulting in a
trivial flow from horizon to boundary. In the presence of chemical potential,
the story becomes complicated due to the fact that gauge field and metric
fluctuation can no longer be decoupled. This results in a nontrivial flow from
horizon to boundary. Though horizon conductivity can be expressed in terms of
geometrical quantities evaluated at the horizon, there exist no such neat
result for electrical conductivity at the boundary. In this paper we propose an
expression for boundary conductivity expressed in terms of geometrical
quantities evaluated at the horizon and thermodynamical quantities. We also
consider the theory at finite cutoff outside the horizon (arXiv:1006.1902) and
give an expression for cutoff dependent electrical conductivity, which
interpolates smoothly between horizon conductivity and boundary conductivity .
Using the results about the electrical conductivity we gain much insight into
the universality of thermal conductivity to viscosity ratio proposed in
arXiv:0912.2719.Comment: An appendix added discussing relation between boundary conductivity
and universal conductivity of stretched horizon, version to be published in
JHE
Universal properties of thermal and electrical conductivity of gauge theory plasmas from holography
We propose that for conformal field theories admitting gravity duals, the
thermal conductivity is fixed by the central charges in a universal manner.
Though we do not have a proof as yet, we have checked our proposal against
several examples. This proposal, if correct, allows us to express electrical
conductivity in terms of thermodynamical quantities even in the presence of
chemical potential.Comment: 13 pages, appendix added, close to journal versio
Composite Fermion Metals from Dyon Black Holes and S-Duality
We propose that string theory in the background of dyon black holes in
four-dimensional anti-de Sitter spacetime is holographic dual to conformally
invariant composite Dirac fermion metal. By utilizing S-duality map, we show
that thermodynamic and transport properties of the black hole match with those
of composite fermion metal, exhibiting Fermi liquid-like. Built upon
Dirac-Schwinger-Zwanziger quantization condition, we argue that turning on
magnetic charges to electric black hole along the orbit of Gamma(2) subgroup of
SL(2,Z) is equivalent to attaching even unit of statistical flux quanta to
constituent fermions. Being at metallic point, the statistical magnetic flux is
interlocked to the background magnetic field. We find supporting evidences for
proposed holographic duality from study of internal energy of black hole and
probe bulk fermion motion in black hole background. They show good agreement
with ground-state energy of composite fermion metal in Thomas-Fermi
approximation and cyclotron motion of a constituent or composite fermion
excitation near Fermi-point.Comment: 30 pages, v2. 1 figure added, minor typos corrected; v3. revised
version to be published in JHE
On RAF Sets and Autocatalytic Cycles in Random Reaction Networks
The emergence of autocatalytic sets of molecules seems to have played an
important role in the origin of life context. Although the possibility to
reproduce this emergence in laboratory has received considerable attention,
this is still far from being achieved. In order to unravel some key properties
enabling the emergence of structures potentially able to sustain their own
existence and growth, in this work we investigate the probability to observe
them in ensembles of random catalytic reaction networks characterized by
different structural properties. From the point of view of network topology, an
autocatalytic set have been defined either in term of strongly connected
components (SCCs) or as reflexively autocatalytic and food-generated sets
(RAFs). We observe that the average level of catalysis differently affects the
probability to observe a SCC or a RAF, highlighting the existence of a region
where the former can be observed, whereas the latter cannot. This parameter
also affects the composition of the RAF, which can be further characterized
into linear structures, autocatalysis or SCCs. Interestingly, we show that the
different network topology (uniform as opposed to power-law catalysis systems)
does not have a significantly divergent impact on SCCs and RAFs appearance,
whereas the proportion between cleavages and condensations seems instead to
play a role. A major factor that limits the probability of RAF appearance and
that may explain some of the difficulties encountered in laboratory seems to be
the presence of molecules which can accumulate without being substrate or
catalyst of any reaction.Comment: pp 113-12
Preparation of PbS Nanoparticles by Phase-Transfer Method and Application to Pb2+-Selective Electrode Based on PVC Membrane
A novel approach to prepare homogeneous PbS nanoparticles by phase-transfer method was developed. The preparatory conditions were studied in detail, and the nanoparticles were characterized by transmission electron microscopy (TEM) and UV-vis spectroscopy. Then a novel lead ion-selective electrode of polyvinyl chloride (PVC) membrane based on these lead sulfide nanoparticles was prepared, and the optimum ratio of components in the membrane was determined. The results indicated that the sensor exhibited a wide concentration range of 1.0×10−5 to 1.0×10−2 mol.L−1. The response time of the electrode was about 10 s, and the optimal pH in which the electrode could be used was from 3.0 to 7.0. Selectivity coefficients indicated that the electrode was selective to the primary ion over the interfering ion. The electrode can be used for at least 3 months without any divergence in potential. It was successfully applied to directly determine lead ions in solution and used as an indicator electrode in potentiometric titration of lead ions with EDTA
Childhood Correlates of Blood Lead Levels in Mumbai and Delhi
BACKGROUND: Lead exposure has previously been associated with intellectual impairment in children in a number of international studies. In India, it has been reported that nearly half of the children have elevated blood lead levels (BLLs). However, little is known about risk factors for these elevated BLLs. METHODS: We conducted a retrospective cross-sectional analysis of data from the Indian National Family Health Survey, a population-based study conducted in 1998–1999. We assessed potential correlates of BLLs in 1,081 children who were < 3 years of age and living in Mumbai or Delhi, India. We examined factors such as age, sex, religion, caste, mother’s education, standard of living, breast-feeding, and weight/height percentile. RESULTS: Most children (76%) had BLLs between 5 and 20 μg/dL. Age, standard of living, weight/height percentile, and total number of children ever born to the mother were significantly associated with BLLs (log transformed) in multivariate regression models. Compared with children ≤3 months of age, children 4–11 and 12–23 month of age had 84 and 146% higher BLLs, respectively (p < 0.001). A low standard of living correlated with a 32.3% increase in BLLs (p = 0.02). Children greater than the 95th percentile for their weight/height had 31% (p = 0.03) higher BLLs compared with those who were below the 5th percentile for their weight/height. CONCLUSIONS: Our study found various factors correlated with elevated BLLs in children. The correlation between greater than the 95th percentile weight/height and higher BLL may reflect an impact of lead exposure on body habitus. Our study may help in targeting susceptible populations and identifying correctable factors for elevated BLLs in Mumbai and Delhi
The origin of large molecules in primordial autocatalytic reaction networks
Large molecules such as proteins and nucleic acids are crucial for life, yet
their primordial origin remains a major puzzle. The production of large
molecules, as we know it today, requires good catalysts, and the only good
catalysts we know that can accomplish this task consist of large molecules.
Thus the origin of large molecules is a chicken and egg problem in chemistry.
Here we present a mechanism, based on autocatalytic sets (ACSs), that is a
possible solution to this problem. We discuss a mathematical model describing
the population dynamics of molecules in a stylized but prebiotically plausible
chemistry. Large molecules can be produced in this chemistry by the coalescing
of smaller ones, with the smallest molecules, the `food set', being buffered.
Some of the reactions can be catalyzed by molecules within the chemistry with
varying catalytic strengths. Normally the concentrations of large molecules in
such a scenario are very small, diminishing exponentially with their size.
ACSs, if present in the catalytic network, can focus the resources of the
system into a sparse set of molecules. ACSs can produce a bistability in the
population dynamics and, in particular, steady states wherein the ACS molecules
dominate the population. However to reach these steady states from initial
conditions that contain only the food set typically requires very large
catalytic strengths, growing exponentially with the size of the catalyst
molecule. We present a solution to this problem by studying `nested ACSs', a
structure in which a small ACS is connected to a larger one and reinforces it.
We show that when the network contains a cascade of nested ACSs with the
catalytic strengths of molecules increasing gradually with their size (e.g., as
a power law), a sparse subset of molecules including some very large molecules
can come to dominate the system.Comment: 49 pages, 17 figures including supporting informatio
Semi-Holographic Fermi Liquids
We show that the universal physics of recent holographic non-Fermi liquid
models is captured by a semi-holographic description, in which a dynamical
boundary field is coupled to a strongly coupled conformal sector having a
gravity dual. This allows various generalizations, such as a dynamical exponent
and lattice and impurity effects. We examine possible relevant deformations,
including multi-trace terms and spin-orbit effects. We discuss the matching
onto the UV theory of the earlier work, and an alternate description in which
the boundary field is integrated out.Comment: 26 pages, 4 figures; v2: typos corrected and report number adde
Metastatic signet ring cell adenocarcinoma of bone marrow with bilateral ovarian masses: a case report
We present a case of metastatic signet ring cell adenocarcinoma of bone marrow with radiologically proven bilateral ovarian masses in a 50 year old Asian Indian female. Even after thorough search no extraovarian primary site could be found. Based on overall clinicopathologic correlation, a diagnosis of metastatic signet ring cell adenocarcinoma of bone marrow with uncertain primary was established
Holographic Fermi and Non-Fermi Liquids with Transitions in Dilaton Gravity
We study the two-point function for fermionic operators in a class of
strongly coupled systems using the gauge-gravity correspondence. The gravity
description includes a gauge field and a dilaton which determines the gauge
coupling and the potential energy. Extremal black brane solutions in this
system typically have vanishing entropy. By analyzing a charged fermion in
these extremal black brane backgrounds we calculate the two-point function of
the corresponding boundary fermionic operator. We find that in some region of
parameter space it is of Fermi liquid type. Outside this region no well-defined
quasi-particles exist, with the excitations acquiring a non-vanishing width at
zero frequency. At the transition, the two-point function can exhibit non-Fermi
liquid behaviour.Comment: 52 pages, 6 figures. v3: Appendix F added showing numerical
interpolation between the near-horizon region and AdS4. Additional minor
comments also adde
- …