We study the two-point function for fermionic operators in a class of
strongly coupled systems using the gauge-gravity correspondence. The gravity
description includes a gauge field and a dilaton which determines the gauge
coupling and the potential energy. Extremal black brane solutions in this
system typically have vanishing entropy. By analyzing a charged fermion in
these extremal black brane backgrounds we calculate the two-point function of
the corresponding boundary fermionic operator. We find that in some region of
parameter space it is of Fermi liquid type. Outside this region no well-defined
quasi-particles exist, with the excitations acquiring a non-vanishing width at
zero frequency. At the transition, the two-point function can exhibit non-Fermi
liquid behaviour.Comment: 52 pages, 6 figures. v3: Appendix F added showing numerical
interpolation between the near-horizon region and AdS4. Additional minor
comments also adde