2,673 research outputs found

    Assessment of genetic and biochemical diversity of ecologically variant ectomycorrhizal Russula sp. from India

    Get PDF
    The aim of this study was to develop the phylogenetic relationship amongst the ecologically variant Russula species by using polymerase chain reaction (PCR) based technique, random amplified polymorphic DNA (RAPD) and isozyme analyses. Two groups could be characterized amongst the total isolates by cluster analyses. Protease, cellulase, glutamate dehydrogenase,  pectinase and acid phosphatase designated band P220.16, C472.18, GLD130.21, Pe569.12 and AP472.12, respectively, were common in all the isolates and four monomorphic RAPD bands viz; 818, 512, 298 and 201 bp were also diversified in the isolates. This common band reveals that diversity of these alleles or loci in all ecologically variant isolates. Thus, the present studies discuss the genetic diversity of ecologically variant Russula species on the basis of RAPD and isozyme analysis

    Anomalous structure in the single particle spectrum of the fractional quantum Hall effect

    Get PDF
    The two-dimensional electron system (2DES) is a unique laboratory for the physics of interacting particles. Application of a large magnetic field produces massively degenerate quantum levels known as Landau levels. Within a Landau level the kinetic energy of the electrons is suppressed, and electron-electron interactions set the only energy scale. Coulomb interactions break the degeneracy of the Landau levels and can cause the electrons to order into complex ground states. In the high energy single particle spectrum of this system, we observe salient and unexpected structure that extends across a wide range of Landau level filling fractions. The structure appears only when the 2DES is cooled to very low temperature, indicating that it arises from delicate ground state correlations. We characterize this structure by its evolution with changing electron density and applied magnetic field. We present two possible models for understanding these observations. Some of the energies of the features agree qualitatively with what might be expected for composite Fermions, which have proven effective for interpreting other experiments in this regime. At the same time, a simple model with electrons localized on ordered lattice sites also generates structure similar to those observed in the experiment. Neither of these models alone is sufficient to explain the observations across the entire range of densities measured. The discovery of this unexpected prominent structure in the single particle spectrum of an otherwise thoroughly studied system suggests that there exist core features of the 2DES that have yet to be understood.Comment: 15 pages, 10 figure

    Universal thermal and electrical conductivity from holography

    Full text link
    It is known from earlier work of Iqbal, Liu (arXiv:0809.3808) that the boundary transport coefficients such as electrical conductivity (at vanishing chemical potential), shear viscosity etc. at low frequency and finite temperature can be expressed in terms of geometrical quantities evaluated at the horizon. In the case of electrical conductivity, at zero chemical potential gauge field fluctuation and metric fluctuation decouples, resulting in a trivial flow from horizon to boundary. In the presence of chemical potential, the story becomes complicated due to the fact that gauge field and metric fluctuation can no longer be decoupled. This results in a nontrivial flow from horizon to boundary. Though horizon conductivity can be expressed in terms of geometrical quantities evaluated at the horizon, there exist no such neat result for electrical conductivity at the boundary. In this paper we propose an expression for boundary conductivity expressed in terms of geometrical quantities evaluated at the horizon and thermodynamical quantities. We also consider the theory at finite cutoff outside the horizon (arXiv:1006.1902) and give an expression for cutoff dependent electrical conductivity, which interpolates smoothly between horizon conductivity and boundary conductivity . Using the results about the electrical conductivity we gain much insight into the universality of thermal conductivity to viscosity ratio proposed in arXiv:0912.2719.Comment: An appendix added discussing relation between boundary conductivity and universal conductivity of stretched horizon, version to be published in JHE

    Dietary use and conservation concern of edible wetland plants at indo-burma hotspot: a case study from northeast India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The wetlands of the North East India fall among the global hotspots of biodiversity. However, they have received very little attention with relation to their intrinsic values to human kind; therefore their conservation is hardly addressed. These wetlands are critical for the sustenance of the tribal communities.</p> <p>Methods</p> <p>Field research was conducted during 2003 to 2006 in seven major wetlands of four districts of Manipur state, Northeast India (viz. Imphal-East, Imphal-West, Thoubal, and Bishnupur). A total of 224 wetland-plant-collectors were interviewed for the use and economics of species using semi-structured questionnaires and interview schedules. Imphal, Bishenpur and Thoubal markets were investigated in detail for influx and consumption pattern of these plants. The collectors were also inquired for medicinal use of wetland species. Nutritive values of 21 species were analyzed in laboratory. The vouchers were collected for all the species and deposited in the CSIR-NEIST (<it>Formerly Regional Research Laboratory</it>), Substation, Lamphelpat, Imphal, Manipur, India.</p> <p>Results</p> <p>We recorded 51 edible wetland species used by indigenous people for food and medicinal purposes. Thirty eight species had high medicinal values and used in the traditional system to treat over 22 diseases. At least 27 species were traded in three markets studied (i.e. Imphal, Thoubal and Bishenpur), involving an annual turnover of 113 tons of wetland edible plants and a gross revenue of Rs. 907, 770/- (US$1 = Rs. 45/-). The Imphal market alone supplies 60% of the total business. Eighty per cent of the above mentioned species are very often used by the community. The community has a general opinion that the availability of 45% species has depleted in recent times, 15 species need consideration for conservation while another 7 species deserved immediate protection measures. The nutrient analysis showed that these species contribute to the dietary balance of tribal communities.</p> <p>Conclusions</p> <p>Considering the importance of wild wetland plants in local sustenance, it is suggested to protect their habitats, develop domestication protocols of selected species, and build programs for the long-term management of wetland areas by involving local people. Some medicinal plants may also be used to develop into modern medicines.</p

    Improving cluster recovery with feature rescaling factors

    Get PDF
    The data preprocessing stage is crucial in clustering. Features may describe entities using different scales. To rectify this, one usually applies feature normalisation aiming at rescaling features so that none of them overpowers the others in the objective function of the selected clustering algorithm. In this paper, we argue that the rescaling procedure should not treat all features identically. Instead, it should favour the features that are more meaningful for clustering. With this in mind, we introduce a feature rescaling method that takes into account the within-cluster degree of relevance of each feature. Our comprehensive simulation study, carried out on real and synthetic data, with and without noise features, clearly demonstrates that clustering methods that use the proposed data normalization strategy clearly outperform those that use traditional data normalization

    On The Phase Structure and Thermodynamic Geometry of R-Charged Black Holes

    Full text link
    We study the phase structure and equilibrium state space geometry of R-charged black holes in D=5D = 5, 4 and 7 and the corresponding rotating D3D3, M2M2 and M5M5 branes. For various charge configurations of the compact black holes in the canonical ensemble we demonstrate new liquid-gas like phase coexistence behaviour culminating in second order critical points. The critical exponents turn out to be the same as that of four dimensional asymptotically AdS black holes in Einstein Maxwell theory. We further establish that the regions of stability for R-charged black holes are, in some cases, more constrained than is currently believed, due to properties of some of the response coefficients. The equilibrium state space scalar curvature is calculated for various charge configurations, both for the case of compact as well as flat horizons and its asymptotic behaviour with temperature is established.Comment: 1 + 33 pages, LaTeX, 25 figures. References adde

    Electro-Magnetic Nucleon Form Factors and their Spectral Functions in Soliton Models

    Full text link
    It is demonstrated that in simple soliton models essential features of the electro-magnetic nucleon form factors observed over three orders of magnitude in momentum transfer tt are naturally reproduced. The analysis shows that three basic ingredients are required: an extended object, partial coupling to vector mesons, and relativistic recoil corrections. We use for the extended object the standard skyrmion, one vector meson propagator for both isospin channels, and the relativistic boost to the Breit frame. Continuation to timelike tt leads to quite stable results for the spectral functions in the regime from the 2- or 3-pion threshold to about two rho masses. Especially the onset of the continuous part of the spectral functions at threshold can be reliably determined and there are strong analogies to the results imposed on dispersion theoretic approaches by the unitarity constraint.Comment: 24 pages, (RevTeX), 5 PS-figures; Data points in fig.2 and corresponding references added. Final version, to be published in Z.Physik

    Evaluation of a Bayesian inference network for ligand-based virtual screening

    Get PDF
    Background Bayesian inference networks enable the computation of the probability that an event will occur. They have been used previously to rank textual documents in order of decreasing relevance to a user-defined query. Here, we modify the approach to enable a Bayesian inference network to be used for chemical similarity searching, where a database is ranked in order of decreasing probability of bioactivity. Results Bayesian inference networks were implemented using two different types of network and four different types of belief function. Experiments with the MDDR and WOMBAT databases show that a Bayesian inference network can be used to provide effective ligand-based screening, especially when the active molecules being sought have a high degree of structural homogeneity; in such cases, the network substantially out-performs a conventional, Tanimoto-based similarity searching system. However, the effectiveness of the network is much less when structurally heterogeneous sets of actives are being sought. Conclusion A Bayesian inference network provides an interesting alternative to existing tools for ligand-based virtual screening

    Holographic RG flow of the shear viscosity to entropy density ratio in strongly coupled anisotropic plasma

    Full text link
    We study holographic RG flow of the shear viscosity tensor of anisotropic, strongly coupled N=4 super-Yang-Mills plasma by using its type IIB supergravity dual in anisotropic bulk spacetime. We find that the shear viscosity tensor has three independent components in the anisotropic bulk spacetime away from the boundary, and one of the components has a non-trivial RG flow while the other two have a trivial one. For the component of the shear viscosity tensor with non-trivial RG flow, we derive its RG flow equation, and solve the equation analytically to second order in the anisotropy parameter 'a'. We derive the RG equation using the equation of motion, holographic Wilsonian RG method, and Kubo's formula. All methods give the same result. Solving the equation, we find that the ratio of the component of the shear viscosity tensor to entropy density 'eta/s' flows from above '1/4pi' at the horizon (IR) to below '1/4pi' at the boundary (UV) where it violates the holographic shear viscosity (Kovtun-Son-Starinets) bound and where it agrees with the other longitudinal component.Comment: 17 pages, 2 figures, slight change on the title, more background material added, references added, accepted for publication in JHE
    corecore