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ABSTRACT

Clustering algorithms aim to create a partition of a data set so that each cluster contains homogeneous
entities according to a certain criterion. The data pre-processing stage is crucial in clustering. Features
may describe entities using different scales. To rectify this, one usually applies feature normalisation,
aiming at rescaling features so that none of them overpowers the others in the objective function of
the selected clustering algorithm. In this paper, we argue that the rescaling process should not treat
all features identically. Instead, it should favour the features that are more meaningful for clustering.
With this in mind, we introduce a feature rescaling method that takes into account the within-cluster
degree of relevance of each feature. Our comprehensive simulation study, carried out on the data with
and without noise features, clearly demonstrate that our novel data normalization approach allows our
clustering algorithm to outperform the existing clustering methods that use traditional data normaliza-
tion.

c© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The main aim of any clustering algorithm is to produce a set
of clusters so that the entities belonging to a given cluster are
homogeneous according to some criteria. Such algorithms have
found use in a number of different fields such as bioinformatics,
data mining, computer vision, etc. (Suzuki and Shimodaira,
2006; Panda et al., 2017; Berkhin, 2006; de Souto et al., 2008;
de Amorim and Makarenkov, 2016; de Amorim et al., 2017).

Given a data set X = {x1, x2, ..., xn} in which xi ∈ Rm, a par-
titional crisp clustering algorithm aims to produce a clustering
S = {S 1, S 2, ..., S k}, such that

∣∣∣⋃k
l=1 S l

∣∣∣ = n and S i ∩ S j = ∅

for i, j = 1, 2, ..., k and i , j. It is common for partitional
clustering algorithms to consider a distance between entities,
such as for example the squared Euclidean distance given by
d(xi, x j) =

∑m
v=1(xiv−x jv)2. There are indeed different clustering

approaches, including crisp and fuzzy data partitioning as well
as hierarchical clustering (Aggarwal and Reddy, 2014; Xu and
Tian, 2015). Algorithms under the fuzzy clustering approach
allow a given entity xi to be assigned to more than one cluster,
each assignment has a degree of membership and these usually
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add to one. Hierarchical clustering algorithms seek to produce
a hierarchy of clusters, usually presented as a tree. Thus, an en-
tity xi may belong to more than one cluster when such clusters
are at different levels of the tree. The approach presented in this
paper relates to the crisp partitional clustering.

A special attention in clustering should be given to data pre-
processing. During this stage, one of the main concerns is to
apply the most appropriate data normalisation technique. The
m features used to describe each entity xi ∈ X may be defined
using different scales. Thus, a feature v with a wider scale than
any other feature in X will have a higher contribution to clus-
tering than any other individual feature. This may lead to poor
cluster recovery, particularly if v is not as meaningful as the
other features in X. With this in mind, data sets are usually nor-
malised so that no feature overpowers others. The main data
normalisation techniques used in data mining are the range nor-
malisation, min-max normalisation, rescaling to unit length, z-
scores and robust z-scores.

Having a balanced data set with features defined at the same
scale is certainly a good starting point. However, in this pa-
per we maintain that data normalisation should not aim to treat
all features identically. It should instead aim to favour features
that are more meaningful for clustering. This is the main con-
tribution of our study. We show that the cluster-specific fea-
ture weights produced by a particular algorithm can be inter-
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preted as feature rescaling factors. We also show that rescaling
a data set using these features weights leads to a better cluster
recovery. Our approach is quite unusual because our feature
weights are cluster-specific. Thus, in our method each feature v
is rescaled with k factors, where k is the number of clusters.

The remainder of the paper is organised as follows: Section
2 describes relevant related work in both clustering and feature
rescaling; Section 3 presents our method in details, explaining
in particular why it should work; Section 4 describes our exper-
imental set up and the results we obtained; Section 5 finalises
our paper by presenting the main contributions of this study.

2. Related work

We begin this section by briefly reviewing relevant cluster-
ing algorithms. We then discuss popular methods for feature
rescaling.

2.1. Clustering algorithms

K-means (MacQueen et al., 1967) is arguably the most popu-
lar partitional clustering algorithm (Jain, 2010; Steinley, 2006).
It aims to partition a data set X, containing n entities, into k non-
overlapping clusters S = {S 1, S 2, ..., S k}, so that |

⋃k
l=1 S l| = n.

It does so by minimising the within-cluster sum of squares:

P(U,Z) =

k∑
l=1

n∑
i=1

m∑
v=1

uil(xiv − zlv)2, (1)

where u is a n×k binary matrix in which the value of uil indicates
whether or not xi ∈ S l, and zl is the centroid of cluster S l (i.e.,
its centre of gravity). If the square Euclidean distance is used in
(1), it becomes straightforward that zlv = |S l|

−1 ∑n
i=1 uilxiv. We

can summarise k-means in three steps:

1. Select k entities from X uniformly at random and copy
their values into the initial centroids Z = {z1, z2, ..., zk}.

2. Assign each xi ∈ X to the cluster S l whose centroid zl is
the nearest to xi and update uil accordingly. If this step
produces no change in u, then stop.

3. Update zl to the component-wise mean of xi ∈ S l, for l =

1, 2, ..., k.

The algorithm above is guaranteed to converge. This is true for
two reasons: (i) the number of possible partitions may be large,
but it is finite and (ii) the output of (1) is monotonically de-
creasing, and by consequence no clustering is repeated. How-
ever, there is no guarantee the final clustering will be optimal.
Due to its greedy nature, the final clustering found by k-means
is usually only a local minima solution. Moreover, this cluster-
ing is highly dependent on the initial centroids (usually set up
at random). In fact, finding the optimal clustering minimising
(1) is an NP-hard problem, even for n = 2 (Aloise et al., 2009).

There has been a considerable research effort aiming at de-
signing algorithms capable of producing good initial centroids
for k-means. Here, we discuss two methods that we find to be
particularly relevant. We direct readers interested in a wider
view to the following papers Yuan et al. (2004); Hatamlou

(2012); Erisoglu et al. (2011); Sun et al. (2002); Steinley and
Brusco (2007), and references therein.

K-means++ (Arthur and Vassilvitskii, 2007) is a very popu-
lar implementation of k-means, which has become the default
k-means program in MATLAB. This algorithm selects the first
centroid at random from the entities, and the others using a
weighted probability related to the distances between entities
and their closest centroid already chosen.

1. Set l = 1. Select an entity from X uniformly at random
and copy its values to zl.

2. Increment l by one. Select an entity x j from X at random,

with probability D(x j)2∑n
i=1 D(xi)2 and copy its values to zl.

3. Repeat the steps above until l = k.
4. Run k-means using the {z1, z2, ..., zk} as initial centroids.

In the above, D(xi) represents the distance between xi and its
nearest centroid. Experiments show that k-means++ has a
faster convergence to a lower criterion output (1) than the tradi-
tional k-means algorithm (Arthur and Vassilvitskii, 2007).

Intelligent k-means (ik-means) (Mirkin, 2012) is another
popular algorithm designed to determine good initial centroids
for k-means. It does so by using the concept of anomalous pat-
terns. We describe the main steps of this algorithm below.

1. Find the entity xi ∈ X that is the farthest one from the data
centre (zc), and copy its values to zt.

2. Run k-means on X with two initial centroids, zt and zc,
leading to the clusters S t and S c. During this clustering,
do not allow zc to move at the centroid update step.

3. If |S t | > θ add zt to Z′ and remove each xi ∈ S t from X. If
|X| > 0, then go to Step 1.

4. Run k-means on the whole original data set using the cen-
troids in Z′ as initial centroids.

The above identifies a centroid zt and the related cluster S t by
iteratively minimising:

P(U,Z) =

n∑
i=1

m∑
v=1

uit(xiv − ztv)2 +

n∑
i=1

m∑
v=1

uic(xiv − zcv)2. (2)

Given that clustering is usually done after data normalisation
leading to the data centre (zc) of zero, we can rewrite (2) as
follows:

P(U,Z) =

n∑
i=1

m∑
v=1

uit(xiv − ztv)2 +

n∑
i=1

m∑
v=1

uicx2
iv. (3)

This anomalous pattern method identifies suitable initial cen-
troids for k-means as well as the number of clusters k, and it
does so quite successfully (Chiang and Mirkin, 2010). In this
paper we are not interested in finding the number of clusters in
a data set, so when using this initialisation we set θ = 0 and
select the k centroids in Z′ with the largest cardinality.

The final clustering generated by k-means depends heavily
on the initial centroids. Both k-means++ and ik-means at-
tempt to identify good initial centroids, but unfortunately this
is not the only weakness in k-means. The k-means criterion
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(1) assumes that every feature in the data set is equally rele-
vant, which is hardly the case in real-life scenarios. With this in
mind de Amorim and Mirkin (2012) introduced the intelligent
Minkowski weighted k-means (imwk-means) - an algorithm ca-
pable of successfully calculating within-cluster feature weights
that improve cluster recovery (de Amorim, 2016; Melvin et al.,
2016). The Minkowski distance between entity xi ∈ S l and
centroid zl is defined by:

d(xi, zl) =

m∑
v

wp
lv|xiv − zlv|

p, (4)

where wlv is the weight of feature v at cluster S l, and p is
a user-defined Minkowski exponent. This method applies the
Minkowski distance rather than the Euclidean distance to avoid
clusterings biased solely towards Gaussian (spherical) clusters.
The Minkowski exponent p allows one to control the bias shape
of clusters. For instance, at p = 1 clusters are biased towards
diamond shapes, at p = 2 they are biased towards spherical
shapes, and at p→ ∞ the bias is towards squares. Clearly, other
values of p would lead to intermediary shapes to those stated
above. Equation (4) is in fact the pth power of the Minkowski
distance, which is analogous to the use of the squared Euclidean
distance in k-means. The distance (4) leads to the new optimiza-
tion criterion:

P(U,Z,W) =

k∑
l=1

n∑
i=1

m∑
v=1

uilw
p
lv|xiv − zlv|

p. (5)

The minimisation of (5) subject to a crisp clustering and∑m
v=1 wlv = 1 for l = 1, 2, ..., k implies:

wlv =
1∑m

j=1

[
Dlv
Dl j

] 1
p−1

, (6)

where Dlv =
∑n

i=1 uil|xiv − zlv|
p. We can minimise (5) by adding

an extra step to k-means. We refer to this as the Minkowski
weighted k-means (mwk-means). The steps of this algorithm
are as follows:

1. Select k entities from X uniformly at random, copy their
values to the initial centroids Z = {z1, z2, ..., zk}. Set each
wlv = m−1.

2. Assign each xi ∈ X to the cluster S l whose centroid zl is
the nearest to xi as per (4), and update uil accordingly. If
this step produces no change in u, stop.

3. Update each zl to the Minkowski centre of its cluster S l

(see below).
4. Update each wlv as per (6). Go back to Step 2.

The Minkowski centre for feature v at cluster S l is the value
µ that minimises γv(µ) =

∑n
i=1 uil|xiv − µ|

p. Notice that at
p ≥ 1, γ(µ) is a U-shaped curve with a minimum in the inter-
val [min(xv),max(xv)]. We can then minimise γ(µ) using stan-
dard methods for convex optimisation. For instance, to find the
Minkowski centre for feature v at cluster S l we can start with
µ = |S l|

−1 ∑n
i=1 uilxiv. We then move µ by a fixed amount (0.001,

say) per step to the side that reduces γv. The imwk-means in-
cludes a Minkowski-based ik-means initialisation designed to

find good initial centroids as well as good feature weights, as
we can see below.

1. Set zc to be the Minkowski centre of X, and each wlv =

m−1.
2. Find the entity xi ∈ X that is the farthest from zc using (4)

and copy its values to zt.
3. Run mwk-means using zc and zt as initial centroids, leading

to the clusters S c and S t. In Step 3 of mwk-means do not
allow zc to move.

4. Add zt to Z′ and w to W ′.
5. Remove all entities xi ∈ S t from X. If |X| > 0 go to Step 2.
6. Keep in Z′ and W ′ only the elements related to the k clus-

ters with the highest cardinality.
7. Run mwk-means on the original data set X initialised with

the centroids in Z′ and weights in W ′.

The imwk-means algorithm clearly supports the intuitive idea
that a feature v may be more meaningful to one cluster than to
another. We model this using wlv to set the degree of relevance
of feature v at cluster S t.

2.2. Feature rescaling
Clustering algorithms usually require feature rescaling in the

data pre-processing step. The general idea is to balance the
values of features so that those with a higher scale do not over-
power others. For instance, when clustering individuals the fea-
ture weight (measured in kilograms) will have a higher contri-
bution to the criterion (1) than the feature height (measured in
meters). This happens because in absolute values the weight
of humans tends to be considerably larger than their height (in
other words, the variance of weight is larger than that of height).
Once all features present values on a common scale, the data set
can be clustered.

There are different feature rescaling methods that can be
applied during the data pre-processing step of clustering. Here,
we focus on the most popular of them.

Z-scores
The z-score normalisation is arguably the most popular
approach of feature rescaling. The z-score of xiv is given by:

x′iv =
xiv − x̄v

σv
, (7)

where x̄v and σv are the mean and standard deviation of feature
v, respectively. The standardised x′iv represents the number
of standard deviations by which the original xiv is above
x̄v. A popular extension of this method is the robust z-score
normalisation in which the mean is replaced by the median and
the standard deviation by MAD (Median Absolute Deviation).
This method is more robust than z-scores in the presence of
outliers.

Range normalisation
The range normalisation is a popular alternative to the z-score,
particularly in cluster analysis . The normalised value of xiv is
computed as follows:

x′iv =
xiv − x̄v

max(xv) − min(xv)
, (8)
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where max(xv) and min(xv) are the maximum and minimum
values of feature v, respectively. There is a crucial difference
between the range normalisation and z-scores, the latter is
biased toward unimodal distributions. This is probably easier to
explain with an example. Let us take two features, a unimodal
v1 and a multimodal v2. The standard deviation of v2 is likely
to be higher than that of v1. Thus, the z-score value of v1 will
be higher than that of v2 even though v2 has a better cluster
information.

Min-max normalisation
This is arguably the simplest method one can use to normalise
features. It rescales the features of a given data set to the
interval [0, 1]:

x′iv =
xiv − min(xv)

max(xv) − min(xv)
. (9)

Rescaling to unit length
A feature v can also be interpreted as being a vector. Thus, it
is possible to normalise the components of v so that this vector
has a length of one. In this case, the normalised value of xiv is
obtained as follows:

x′iv =
xiv

||x||
, (10)

where ||xv|| =

√∑n
i=1 x2

iv is the Euclidean length of feature v.

3. Clustering with feature rescaling factors

Feature rescaling methods such as those discussed in Section
2.2 are certainly a good starting point, but we maintain their
application cannot be the final step of the data pre-processing
stage. This stage should not aim at treating all features equally,
but should instead favour features that have a higher degree of
relevance for clustering. With this in mind, let us analyse the
weights generated by imwk-means. Our objective here is to get
a set of weights minimising (5) subject to

∑m
v=1 wlv = 1 for

l = 1, 2, ..., k within a crisp clustering criterion (i.e., S i ∩ S j for
i, j = 1, 2, ..., k and i , j). Given that Dlv =

∑n
i=1 uil|xiv − zlv|

p,
we can rewrite the function to be minimised (5) as follows:

P(U,Z,W) =

m∑
v=1

k∑
l=1

wp
lvDlv.

Since we calculate feature weights one cluster at a time and∑m
v=1 wlv = 1 for l = 1, 2, ..., k, the following Lagrangian func-

tion can be formulated:

L(W, λ) =

m∑
v=1

wp
lvDlv + λ

1 − m∑
v=1

wlv

 .
The partial derivatives of L with respect to wlv and λ can be
equated to 0. They are as follows:

∂L

∂wlv
= pwp−1

lv Dlv − λ = 0, (11)

∂L

∂λ
= 1 −

m∑
v=1

wlv = 0, (12)

respectively. Equation (11) leads to:

wlv =

(
λ

pDlv

) 1
p−1

. (13)

Substituting (13) into (12), we obtain:

m∑
v=1

(
λ

pDlv

) 1
p−1

= 1,

leading to:

(λ)
1

p−1 =
1∑m

v=1

(
1

pDlv

) 1
p−1

.

and by consequence to Equation (6). The above demonstrates
that the features generated by imwk-means are in fact quite spe-
cific: they minimise (5) and model the within-cluster degree of
relevance of each feature. Thus, they can be used to rescale a
data set in a rather unconventional way. Given u and feature
weights w, we can rescale a data set by setting:

x′iv =

k∑
l=1

uilxivwlv. (14)

This is unconventional because a given feature v is rescaled
with k different factors w1,w2, ...,wk. We propose to improve
cluster recovery with feature rescaling factors following the
steps below.

1. Standardise the data set X using either (7), (8), (9), or (10).
2. Find a clustering U and weights W by applying the imwk-

means to the standardised data set.
3. Rescale X using U and W by applying (14).
4. Apply imwk-means to the rescaled data set, leading to the

clustering U′.

One should note that rescaling a feature with (14) only makes
sense because the weights in W minimise (5). The imwk-means
requires a user-defined parameter p and its rescaled version re-
quires two values of p. The value of p1 is used to generate the
clustering U and weights W (Step 2) and the value p2 is used
in clustering of the rescaled data set (Step 4). Of course, one
could set p1 = p2.

According to Formula (14), the rescaling part of the algo-
rithm has a linear time complexity with respect to the number
of clusters k, the number of features m, and the number of en-
tities n. Thus, our rescaling would not increase the asymptotic
time complexity of the k-means or imwk-means algorithms.

4. Experimental results

The data pre-processing stage is crucial for any clustering al-
gorithm. In this step, features are usually put on the same scale
so that none overpowers any of the others. The main objective
of our experiments is to demonstrate that a rescaling favour-
ing meaningful features leads to better cluster recovery. This
happens because the feature rescaling factors generated by our
method minimise sum of within cluster distances (see Section
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3). Hence, we envisage that our method could be used in the
data pre-processing step of any k-means-based clustering algo-
rithm.

In this section, we experiment with three algorithms: (i)
k-means++, giving the reader a clear idea of a generally ac-
cepted baseline for each data set; (ii) imwk-means, allowing
us to generate the feature re-scaling factors; (iii) imwk-means
with a data set rescaled using our method. We show that our
rescaling method improves cluster recovery. We could have ap-
plied our method with other clustering algorithms (including
k-means++), but decided not to do so here because this would
necessarily increase the length of our paper.

We divided the remainder of this section into two parts. First,
we explain the details related to the data sets we have used in
our experiments. Then, we present and discuss the obtained
results.

4.1. Experimental setup

In this paper, we experimented with a total of 600 synthetic
data sets generated under 12 different configurations (see Ta-
ble 1), with and without added noise. These data sets contain
spherical Gaussian clusters. Their covariance matrices are diag-
onal, with the same diagonal value σ2, generated at each cluster
randomly between 0.5 and 1.5. Each centroid component was
generated independently from a Gaussian distribution with zero
mean and unity variance. Each cluster has a cardinality taken
from a uniformly random distribution, subject to a minimum of
20 entities. We initially generated 50 data sets under each of
the following configurations: (i) 1000 entities over six features
partitioned into three clusters (1000x6-3); (ii) 1000 entities over
12 features partitioned into six clusters (1000x12-6); (iii) 1000
entities over 20 features partitioned into ten clusters (1000x20-
10).

For each data set containing m features, we have generated
two data sets including dm

2 e noise features (leading to a total of
d1.5me features) and one other data set with within cluster noise.
Here, we experiment with three models of noise. In the first, we
considered a noise feature (NF) as a feature containing solely
uniformly random values. In the second, we considered a noise
feature as one containing random values from a Gaussian dis-
tribution (NNF). In our third noise model we select 50% of the
m×k feature segments uniformly at random, and then substitute
the selected segments with uniformly random values - creating
within cluster noise (WCN). This approach has quadrupled the
number of data sets tested in our experiments. In all of our ex-
periments we have normalised the features in a data set using
one of the methods described in Section 2.2.

Given that we know the true labels for all our data sets (ie.
their true structure is known), it makes sense to measure clus-
ter recovery using an external validation index. In the case of
clustering, the strongest contender is the Adjusted Rand In-
dex (ARI) (Rand, 1971). The ARI between the clusterings
S = {S 1, S 2, ..., S k} and U = {U1,U2, ...,Ur} is defined as
folows:

ARI(S ,U) =

∑
i j

(
ni j
2

)
− [

∑
i

(
ai
2

)∑
j

(
b j
2

)
]/

(
n
2

)
1
2 [

∑
i

(
ai
2

)
+

∑
j

(
b j
2

)
] − [

∑
i

(
ai
2

)∑
j

(
b j
2

)
]/

(
n
2

) , (15)

Table 1: There are 50 data sets for each of the configurations below. Each
data set contains Gaussian clusters with different spreads and cardinalities. We
added noise features containing uniformly random values (NF), normal random
values (NNF), or within cluster noise (WCN) to the data sets in some configu-
rations.

Noise Features Clusters
(%) normal uniform original total (k)

noise noise (m)
1000x6-3 0.00 0 0 6 6 3
1000x12-6 0.00 0 0 12 12 6
1000x20-10 0.00 0 0 20 20 10
1000x6-3 +3NF 33.33 0 3 6 9 3
1000x12-6 +6NF 33.33 0 6 12 18 6
1000x20-10 +10NF 33.33 0 10 20 30 10
1000x6-3 +3NNF 33.33 3 0 6 9 3
1000x12-6 +6NNF 33.33 6 0 12 18 6
1000x20-10 +10NNF 33.33 10 0 20 30 10
1000x6-3 WCN 50.00 0 0 6 6 3
1000x12-6 WCN 50.00 0 0 12 12 6
1000x20-10 WCN 50.00 0 0 20 20 10

where ni j = |S i ∩ U j|, ai =
∑r

j=1 |S i ∩ U j|, b j =
∑k

i=1 |S i ∩ U j|.

4.2. Results and analysis

In our first set of experiments, we compared the four feature
rescalings presented in Section 2.2 using the data sets described
in Section 4.1. Table 2 shows the average ARI between the clus-
terings generated by k-means++ using these four feature rescal-
ing approaches. Given that k-means usually returns different
clustering solutions for different random initial partitions, we
ran k-means++ 100 times per data set (notice that we tested 50
different data sets per parameter configuration). Some interest-
ing patterns can be found when observing the results reported in
Table 2. For example, the range normalisation produces slightly
better results than the others in the original data sets (no noise
features) as well as in the data sets containing normal noise val-
ues (NNF). However, in the data sets containing uniformly ran-
dom noise features (NF) or within cluster noise (WCN) it is the
z-score normalisation that produces the best results, while the
range-based normalisations (min-max and range normalisation)
perform poorly.

The main reason for this is that the features containing uni-
formly random values have no cluster structure. Thus, the stan-
dard deviation of such noise features is likely to be higher than
that of original features. Given that z-score (7) include a divi-
sion by the standard deviation, uniformly random noise features
will have lower standard values. By consequence, these noise
features will have a lower contribution to the clustering (1).

Given the results in Table 2, we decided to study in more
details the range and z-score normalisations. We ran two sets
of experiments. In the first of them, our aim was to find out
whether there are parameters for the rescaled imwk − means
that would lead to better cluster recovery than the best possible
clustering by imwk-means, and the expected k-means++ clus-
tering. As k-means++ is among the most popular variations of
k-means (Arthur and Vassilvitskii, 2007), it would be important
to propose a method that outperforms it, regardless of the data
normalization being used.

Table 3 presents the results of our experiments, obtained for
data sets with and without noise, all normalised using the range
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Table 2: Average ARI and standard deviation values for the results found by
k-means++. We ran k-means++ 100 times per data set. There are 50 data sets
per parameter configuration. Each of the four main columns presents the results
for a different normalisation approach.

min-max range norm z-score unit length
ARI std ARI std ARI std ARI std

1000x6-3 0.5145 0.22 0.5198 0.22 0.5060 0.21 0.4821 0.23
1000x12-6 0.6338 0.18 0.6356 0.18 0.6336 0.17 0.6222 0.18
1000x20-10 0.7680 0.12 0.7703 0.12 0.7708 0.11 0.7712 0.12
1000x6-3 +3NF 0.0365 0.11 0.0371 0.11 0.4550 0.21 0.4014 0.22
1000x12-6 +6NF 0.0994 0.11 0.0997 0.11 0.5820 0.17 0.5513 0.18
1000x20-10 +10NF 0.1706 0.10 0.1708 0.10 0.7233 0.14 0.7184 0.12
1000x6-3 +3NNF 0.4735 0.23 0.4748 0.23 0.4690 0.21 0.4102 0.22
1000x12-6 +6NNF 0.5837 0.17 0.5852 0.17 0.5840 0.17 0.5552 0.18
1000x20-10 +10NNF 0.7277 0.13 0.7286 0.13 0.7278 0.12 0.7205 0.12
1000x6-3 WCN 0.0594 0.06 0.0597 0.06 0.1645 0.09 0.1473 0.09
1000x12-6 WCN 0.0926 0.06 0.0920 0.06 0.1835 0.07 0.1767 0.07
1000x20-10 WCN 0.1051 0.03 0.1049 0.03 0.1735 0.05 0.1698 0.05

Table 3: A comparison between the ARI values for imwk-means and its rescaled
version, supplied with good values of the exponents p1 and p2, and the expected
ARI given by k-means++. The presented results are the averages over 50 data
sets for each of the configurations below, each normalised using the range nor-
malisation.

Rescaled
k-means++ imwk-means imwk-means
ARI std ARI std ARI std

1000x6-3 0.5198 0.224 0.5794 0.223 0.6474 0.191
1000x12-6 0.6356 0.177 0.7376 0.174 0.7958 0.136
1000x20-10 0.7703 0.121 0.9070 0.076 0.9390 0.055
1000x6-3 +3NF 0.0371 0.112 0.5541 0.283 0.6781 0.198
1000x12-6 +6NF 0.0997 0.111 0.7543 0.156 0.8307 0.116
1000x20-10 +10NF 0.1708 0.099 0.8239 0.082 0.9356 0.041
1000x6-3 +3NNF 0.4748 0.225 0.5864 0.215 0.6495 0.200
1000x12-6 +6NNF 0.5852 0.172 0.7358 0.174 0.7832 0.156
1000x20-10 +10NNF 0.7286 0.125 0.9050 0.059 0.9381 0.041
1000x6-3 WCN 0.0597 0.059 0.3916 0.194 0.4597 0.162
1000x12-6 WCN 0.0920 0.062 0.6669 0.157 0.6811 0.139
1000x20-10 WCN 0.1049 0.032 0.8481 0.049 0.8868 0.048

normalisation. There are 50 data sets for each configuration,
this is the reason why we present the standard deviations for all
the three competing algorithms. In this table we can see a clear
pattern. The average ARI given by the rescaled imwk-means
in this experiment is higher than that of imwk-means and k-
means++. This pattern becomes even clearer as the number of
features and clusters increases. It is also interesting to see that
the standard deviation of the results obtained by the rescaled
imwk-means is slightly lower than those of imwk-means and
k-means++ in the majority of cases. Unsurprisingly the clus-
ter recovery improvements provided by imwk-means and its
rescaled version are higher in data sets containing noise fea-
tures. This is a fair expectation for feature weighting algo-
rithms. It is interesting to see that for imwk-means and its
rescaled version we also have the following trend: the higher
is the ARI, the lower is the standard deviation.

Table 4 reports the results for the experiments in which the
data were normalised using z-scores. The general patterns are
still the same. The rescaled imwk-means provides better results
than imwk-means and k-means++. The only major difference
is that now k-means++ produces better results for the data sets
containing noise features composed of uniformly random val-
ues (NF). We have explained the reason for this in the beginning

Table 4: A comparison between the ARI values for imwk-means and its rescaled
version, supplied with good values of the exponents p1 and p2, and the expected
ARI given by k-means++. The presented results are the averages over 50 data
sets for each of the configurations below, each normalised using z-scores.

Rescaled
k-means++ imwk-means imwk-means
ARI std ARI std ARI std

1000x6-3 0.5060 0.214 0.5888 0.218 0.6617 0.189
1000x12-6 0.6336 0.173 0.7412 0.173 0.7996 0.129
1000x20-10 0.7708 0.112 0.8981 0.076 0.9376 0.053
1000x6-3 +3NF 0.4550 0.211 0.5793 0.214 0.6595 0.195
1000x12-6 +6NF 0.5820 0.171 0.7285 0.178 0.8138 0.127
1000x20-10 +10NF 0.7233 0.125 0.9024 0.067 0.9400 0.040
1000x6-3 +3NNF 0.4690 0.212 0.5794 0.226 0.6513 0.192
1000x12-6 +6NNF 0.5840 0.168 0.7381 0.179 0.7879 0.138
1000x20-10 +10NNF 0.7278 0.123 0.8946 0.066 0.9358 0.045
1000x6-3 WCN 0.1645 0.095 0.3635 0.180 0.4144 0.171
1000x12-6 WCN 0.1835 0.070 0.6128 0.169 0.6256 0.167
1000x20-10 WCN 0.1735 0.048 0.8386 0.068 0.8405 0.072

Table 5: A comparison between the ARI values for imwk-means and its rescaled
version, supplied with parameters that work well on average, and the expected
ARI given by k-means++. The presented results are the averages over 50 data
sets for each of the configurations below, each normalised using the range nor-
malisation.

Rescaled
k-means++ imwk-means imwk-means
ARI std ARI std p ARI std p1 p2

1000x6-3 0.5198 0.224 0.5249 0.227 2.8 0.5453 0.227 4.4 2.9
1000x12-6 0.6356 0.177 0.6434 0.191 2.5 0.6601 0.187 3.9 2.5
1000x20-10 0.7703 0.121 0.8294 0.116 2.5 0.8539 0.100 5.0 2.1
1000x6-3 +3NF 0.0371 0.112 0.4385 0.308 1.5 0.4622 0.307 1.4 2.8
1000x12-6 +6NF 0.0997 0.112 0.6820 0.190 1.6 0.7152 0.195 1.7 2.4
1000x20-10 +10NF 0.1708 0.099 0.7519 0.105 1.7 0.8619 0.070 2.0 1.7
1000x6-3 +3NNF 0.4748 0.225 0.5236 0.225 2.4 0.5341 0.219 4.9 2.6
1000x12-6 +6NNF 0.5852 0.172 0.6539 0.175 2.0 0.6518 0.183 4.7 2.4
1000x20-10+10NNF 0.7286 0.125 0.8286 0.103 2.5 0.8622 0.090 4.8 2.1
1000x6-3 WCN 0.0597 0.059 0.2524 0.208 1.6 0.2798 0.215 4.7 1.5
1000x12-6 WCN 0.0920 0.062 0.5677 0.191 1.5 0.5791 0.192 1.5 2.9
1000x20-10 WCN 0.1049 0.032 0.7594 0.116 1.6 0.7690 0.107 5.0 1.7

of this section. The k-means++ results for the data sets contain-
ing within cluster noise (WCN) are also somewhat better, but
still poor overall.

In our second set of experiments our aim was to determine
whether there is a pattern for suitable parameters of the rescaled
imwk-means. In this scenario the first question one usually
would ask is whether particular pairs of the exponent param-
eters p1 and p2 work well on average (over the 50 data sets for
each configuration). Table 5 shows the results of these exper-
iments for the data sets normalised using the range normalisa-
tion. The differences in ARI are not as large as before, but we
can still see that the rescaled imwk-means is competitive and
usually outperforms imwk-means. Table 6 presents the results
for data sets normalised using z-scores. In this case, the rescaled
imwk-means is still superior to imwk-means and k-means++.

Given the difficulty of finding clear patterns of good values
for p1 and p2, we generated various figures showing the average
ARI per pair (p1, p2) for each data set considered in our simu-
lations. For easy comparison, we set to white each pixel rep-
resenting a pair (p1, p2) which did not outperform k-means++.
Notice that we have experimented with values of p from 1.1 to
5.0 (in steps of 0.1).
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Table 6: A comparison between the ARI values for imwk-means and its rescaled
version, supplied with parameters that work well on average, and the expected
ARI given by k-means++. The presented results are the averages over 50 data
sets for each of the configurations below, each normalised using z-scores.

Rescaled
k-means++ imwk-means imwk-means
ARI std ARI std p ARI std p1 p2

1000x6-3 0.5060 0.214 0.5286 0.221 2.7 0.5406 0.229 3.9 2.6
1000x12-6 0.6336 0.173 0.6533 0.190 3.0 0.6463 0.184 4.3 2.5
1000x20-10 0.7708 0.112 0.8299 0.104 2.1 0.8489 0.110 3.8 2.1
1000x6-3 +3NF 0.4550 0.211 0.4771 0.200 3.8 0.5143 0.239 3.1 3.1
1000x12-6 +6NF 0.5820 0.171 0.6281 0.193 2.6 0.6496 0.205 5.0 3.0
1000x20-10 +10NF 0.7233 0.125 0.8221 0.110 2.5 0.8567 0.104 3.2 2.0
1000x6-3 +3NNF 0.4690 0.212 0.5072 0.232 2.4 0.5193 0.229 4.9 2.7
1000x12-6 +6NNF 0.5840 0.168 0.6577 0.186 1.8 0.6430 0.186 4.8 2.4
1000x20-10 +10NNF 0.7278 0.123 0.8282 0.084 2.4 0.8524 0.096 4.1 2.2
1000x6-3 WCN 0.1645 0.095 0.2466 0.189 2.0 0.2672 0.154 3.4 2.6
1000x12-6 WCN 0.1835 0.070 0.5199 0.204 1.6 0.5529 0.209 1.4 2.2
1000x20-10 WCN 0.1735 0.048 0.7496 0.115 1.6 0.7682 0.143 1.4 2.1
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Fig. 1: Average ARI given by the rescaled imwk-means for each pair of the
exponent parameters p1 and p2. No noise features were added to the data.
White pixels represent pairs (p1, p2) which did not outperform k-means++. We
applied the range normalisation to the data sets in Figures 1a, 1b and 1c. We
applied z-scores to the data sets in Figures 1d, 1e and 1f.

We begin our analysis describing the experiments with noise-
free data sets. Figure 1 shows the ARI results for the experi-
ments with these data sets normalised using the range normali-
sation and z-scores. The presented results indicate that in both
cases (range normalisation and z-score) there is a limited num-
ber of pairs (p1, p2) that lead to high values of ARI for the data
configurations 1000x6-3 and 1000x12-6. However, when the
number of features and clusters increase (and by consequence
the difficulty of producing a good clustering), we can observe
that the majority of the exponent parameters (p1, p2) lead to
high values of ARI. For instance, for the data configuration
1000x20-10 nearly all pairs (p1, p2), such that p1 is located in
the interval [2, 4] lead to a high ARI.

Figure 2 shows an even more favourably pattern for the pro-
posed rescaled imwk-means. These experiments concern data
sets to which we have added noise features containing uni-
formly random values. When the data sets have been nor-
malised used the range normalisation, nearly all possible pairs
(p1, p2) led to a considerably high value of ARI. In the case
in which data sets have been normalised with z-scores, we can
clearly see that the more complex a data set is, the larger is
the pool of pairs (p1, p2) producing a high value of ARI. In
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(f) 1000x20-10 +10NF.
Fig. 2: Average ARI given by the rescaled imwk-means for each pair of the
exponent parameters p1 and p2. White pixels represent pairs (p1, p2) which
did not outperform k-means++. The noise features (NF) are composed of uni-
formly random variables. We applied the range normalisation to the data sets
in Figures 2a, 2b and 2c. We applied z-scores to the data sets in Figures 2d, 2e
and 2f.
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(f) 1000x20-10 +10NNF.
Fig. 3: Average ARI given by the rescaled imwk-means for each pair of the
exponent parameters p1 and p2. White pixels represent pairs (p1, p2) which
did not outperform k-means++. The noise features are composed of normally
distributed random variables (NNF). We applied range the normalisation to the
data sets in Figures 2a, 2b and 2c. We applied z-scores to the data sets in Figures
2d, 2e and 2f.

the case of the data sets under the configuration 1000x20-10
+10NF, nearly all pairs lead to a high value of ARI.

Figure 3 shows the same pattern. It illustrates the results
of the experiments conducted with data sets to which we have
added noise features containing Gaussian random values. Still,
the more complex a data set is, the larger is the number of pairs
(p1, p2) producing high values of ARI. We can also see that the
difference between the ARI values generated by the rescaled
imwk-means and k-means++ becomes larger. Again, in the case
of the data configuration 1000x20-10 +10NNF, nearly all pairs
of the exponent parameters lead to a high value of ARI.

Overall our experiments show that rescaling a data set using
our method improves cluster recovery. This is hardly surpris-
ing given that our feature rescaling factors minimise the within-
cluster sum of distances (see Section 3). Thus, our method can
certainly be used during the data pre-processing stage of any
clustering algorithm based on distance measures. Of course,
one could ask why our method improves the cluster recovery
of algorithms capable of applying feature weighting (eg. imwk-
means). This happens because such algorithms start with a sub-
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optimal set of weights, sometimes containing even random val-
ues (for details see the recent surveys de Amorim (2016); Deng
et al. (2016); Kriegel et al. (2009, 2012) and references there
in). Usually, these weights are then improved at each iteration.
Our rescaling method leads to more compact clusters, so the ef-
fect of the final set of weights (the most improved) produced by
imwk-means can be experienced from the first iteration.

5. Conclusion

Feature rescaling is a crucial part of the data pre-processing
step in clustering. Typically original features describe enti-
ties located at different scales. Rescaling aims at balancing
such features so that none of them overpowers the others in the
objective function of the selected clustering algorithm. Here,
we highlight that feature rescaling should in fact favour more
meaningful features, rather than simply put all of them on the
same scale.

Thus, we introduced a data rescaling method based on the
imwk-means algorithm. The latter analyses a normalised data
set and produces a set of cluster-based feature weights. It is
indeed intuitive that some features should be more relevant to
certain clusters than the others. We showed how these weights
can be used to account for the degree of relevance of any given
feature at a particular cluster. These cluster-based weights are
then used as feature rescaling factors. Our rescaling approach
is quite different from the classical ones because a given feature
will be rescaled using k different factors, where k is the number
of clusters. Our rescaling method can be used in the data pre-
processing step of any distance-based clustering algorithm such
as k-means, k-means++, imwk-means, etc.

Our approach works because the feature weights minimise
our clustering criteria (5). Rescaling a data set using these
weights as feature rescaling factors leads to more compact clus-
ters, which are by consequence easier to be identified by a clus-
tering algorithm. We demonstrated that our data pre-processing
method generally produces a better cluster recovery than the
existing methods in a series of simulations involving 600 syn-
thetic data sets. These simulations were carried out with three
types of noise features. First, we considered noise features con-
taining uniformly random values. Second, we considered noise
features containing Gaussian random values. Third, we con-
sidered features containing within cluster noise. Our experi-
ments clearly demonstrated that the presented rescaling tech-
nique is effective and can be recommended for use as a data
pre-processing step in clustering.

We have three directions for future research, (i) it would
be interesting to investigate how the proposed feature rescal-
ing method could be used as a data pre-processing step in the
framework of supervised and semi-supervised machine learn-
ing approaches; (ii) we intend to investigate how our method
behaves under other noise conditions; (iii) we are also inter-
ested in extending our method so that it is capable of dealing
with data sets containing a very high number of features.
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Kriegel, H.P., Kröger, P., Zimek, A., 2009. Clustering high-dimensional data:
A survey on subspace clustering, pattern-based clustering, and correlation
clustering. ACM Transactions on Knowledge Discovery from Data (TKDD)
3, 1.
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