1,489 research outputs found

    Entropy engineering in inorganic non-metallic glass

    Get PDF
    Advances in developing high entropy alloys and ceramics with improved physical properties have greatly broadened their application field from aerospace industry, public transportation to nuclear plants. In this review, we describe the concept of entropy engineering as applicable to inorganic non-metallic glasses, especially for tailoring and enhancing their mechanical, electrical, and optical properties. We also present opportunities and challenges in calculating entropy of inorganic non-metallic glass systems, correlating entropy to glass formation, and in developing functional inorganic non-metallic glasses via the entropy concept

    On the nature of the electroweak phase transition

    Full text link
    We discuss the finite-temperature effective potential of the Standard Model, \veff, with emphasis on the resummation of the most important infrared contributions. We compute the one-loop scalar and vector boson self-energies in the zero-momentum limit. By solving the corresponding set of gap equations, with the inclusion of subleading contributions, we find a non-vanishing magnetic mass for the SU(2)SU(2) gauge bosons. We comment on its possible implications for the nature of the electroweak phase transition. We also discuss the range of validity of our approximations and compare this with other approaches.Comment: 13 pages, latex, 2 postscript figures appended at the end, CERN-TH.6577/92, IEM-FT-58/9

    Emergence of communities on a coevolutive model of wealth interchange

    Full text link
    We present a model in which we investigate the structure and evolution of a random network that connects agents capable of exchanging wealth. Economic interactions between neighbors can occur only if the difference between their wealth is less than a threshold value that defines the width of the economic classes. If the interchange of wealth cannot be done, agents are reconnected with another randomly selected agent, allowing the network to evolve in time. On each interaction there is a probability of favoring the poorer agent, simulating the action of the government. We measure the Gini index, having real world values attached to reality. Besides the network structure showed a very close connection with the economic dynamic of the system.Comment: 5 pages, 7 figure

    Standard Model Higgs boson mass from inflation: two loop analysis

    Get PDF
    We extend the analysis of \cite{Bezrukov:2008ej} of the Standard Model Higgs inflation accounting for two-loop radiative corrections to the effective potential. As was expected, higher loop effects result in some modification of the interval for allowed Higgs masses m_min<m_H<m_max, which somewhat exceeds the region in which the Standard Model can be considered as a viable effective field theory all the way up to the Planck scale. The dependence of the index n_s of scalar perturbations on the Higgs mass is computed in two different renormalization procedures, associated with the Einstein (I) and Jordan (II) frames. In the procedure I the predictions of the spectral index of scalar fluctuations and of the tensor-to-scalar ratio practically do not depend on the Higgs mass within the admitted region and are equal to n_s=0.97 and r=0.0034 respectively. In the procedure II the index n_s acquires the visible dependence on the Higgs mass and and goes out of the admitted interval at m_H below m_min. We compare our findings with the results of \cite{DeSimone:2008ei}.Comment: 24 paged, 9 figures. Journal version (typos fixed, expanded discussions

    Reconstruction of the Primordial Power Spectrum by Direct Inversion

    Full text link
    We introduce a new method for reconstructing the primordial power spectrum, P(k)P(k), directly from observations of the Cosmic Microwave Background (CMB). We employ Singular Value Decomposition (SVD) to invert the radiation perturbation transfer function. The degeneracy of the multipole â„“\ell to wavenumber kk linear mapping is thus reduced. This enables the inversion to be carried out at each point along a Monte Carlo Markov Chain (MCMC) exploration of the combined P(k)P(k) and cosmological parameter space. We present best--fit P(k)P(k) obtained with this method along with other cosmological parameters.Comment: 23 pages, 9 figure

    The electroweak phase transition with a singlet

    Full text link
    We study the electroweak phase transition in the minimal extension of the Standard Model: an extra complex singlet with zero vacuum expectation value. The first-order phase transition is strengthened by the cubic term triggered in the one-loop effective potential by the extra boson. Plasma effects are considered to leading order: they shield the cubic terms and weaken the first-order phase transition. We find a region in the parameter space where baryon asymmetry washout is avoided for Higgs masses consistent with present experimental bounds. However in that region the theory becomes non-perturbative for scales higher than 1010 GeV10^{10}\ GeV.Comment: 11 pages (plus 5 figures.ps available upon request), latex, IEM-FT-67/9

    The scaling attractor and ultimate dynamics for Smoluchowski's coagulation equations

    Full text link
    We describe a basic framework for studying dynamic scaling that has roots in dynamical systems and probability theory. Within this framework, we study Smoluchowski's coagulation equation for the three simplest rate kernels K(x,y)=2K(x,y)=2, x+yx+y and xyxy. In another work, we classified all self-similar solutions and all universality classes (domains of attraction) for scaling limits under weak convergence (Comm. Pure Appl. Math 57 (2004)1197-1232). Here we add to this a complete description of the set of all limit points of solutions modulo scaling (the scaling attractor) and the dynamics on this limit set (the ultimate dynamics). The main tool is Bertoin's L\'{e}vy-Khintchine representation formula for eternal solutions of Smoluchowski's equation (Adv. Appl. Prob. 12 (2002) 547--64). This representation linearizes the dynamics on the scaling attractor, revealing these dynamics to be conjugate to a continuous dilation, and chaotic in a classical sense. Furthermore, our study of scaling limits explains how Smoluchowski dynamics ``compactifies'' in a natural way that accounts for clusters of zero and infinite size (dust and gel)

    Minimizing the stabbing number of matchings, trees, and triangulations

    Full text link
    The (axis-parallel) stabbing number of a given set of line segments is the maximum number of segments that can be intersected by any one (axis-parallel) line. This paper deals with finding perfect matchings, spanning trees, or triangulations of minimum stabbing number for a given set of points. The complexity of these problems has been a long-standing open question; in fact, it is one of the original 30 outstanding open problems in computational geometry on the list by Demaine, Mitchell, and O'Rourke. The answer we provide is negative for a number of minimum stabbing problems by showing them NP-hard by means of a general proof technique. It implies non-trivial lower bounds on the approximability. On the positive side we propose a cut-based integer programming formulation for minimizing the stabbing number of matchings and spanning trees. We obtain lower bounds (in polynomial time) from the corresponding linear programming relaxations, and show that an optimal fractional solution always contains an edge of at least constant weight. This result constitutes a crucial step towards a constant-factor approximation via an iterated rounding scheme. In computational experiments we demonstrate that our approach allows for actually solving problems with up to several hundred points optimally or near-optimally.Comment: 25 pages, 12 figures, Latex. To appear in "Discrete and Computational Geometry". Previous version (extended abstract) appears in SODA 2004, pp. 430-43

    Exclusive Queueing Process with Discrete Time

    Full text link
    In a recent study [C Arita, Phys. Rev. E 80, 051119 (2009)], an extension of the M/M/1 queueing process with the excluded-volume effect as in the totally asymmetric simple exclusion process (TASEP) was introduced. In this paper, we consider its discrete-time version. The update scheme we take is the parallel one. A stationary-state solution is obtained in a slightly arranged matrix product form of the discrete-time open TASEP with the parallel update. We find the phase diagram for the existence of the stationary state. The critical line which separates the parameter space into the regions with and without the stationary state can be written in terms of the stationary current of the open TASEP. We calculate the average length of the system and the average number of particles

    Direct observation by resonant tunneling of the B^+ level in a delta-doped silicon barrier

    Full text link
    We observe a resonance in the conductance of silicon tunneling devices with a delta-doped barrier. The position of the resonance indicates that it arises from tunneling through the B^+ state of the boron atoms of the delta-layer. Since the emitter Fermi level in our devices is a field-independent reference energy, we are able to directly observe the diamagnetic shift of the B^+ level. This is contrary to the situation in magneto-optical spectroscopy, where the shift is absorbed in the measured ionization energy.Comment: submitted to PR
    • …
    corecore