70 research outputs found

    Increased pCO2 changes the lipid production in important aquacultural feedstock algae Isochrysis galbana, but not in Tetraselmis suecica

    Get PDF
    Increased anthropogenic CO2 emissions are leading to an increase in CO2 uptake by the world's oceans and seas, resulting in ocean acidification with a decrease in global ocean water pH by as much as 0.3–0.4 units by the year 2100. The direct effects of changing pCO2 on important microalgal feedstocks are not as well understood. Few studies have focused on lipid composition changes in specific algal species in response to ocean acidification and yet microalgae are an indispensable food source for various marine species, including juvenile shellfish. Isochrysis galbana and Tetraselmis suecica are widely used in aquaculture as feeds for mussels and other shellfish. The total lipid contents and concentrations of I. galbana and T. suecica were investigated when grown under present day (400 ppm) and ocean acidification conditions (1000 ppm) to elucidate the impact of increasing pCO2 on an important algae feedstock. Total lipids, long-chain alkenones (LCAs) and alkenoates decreased at 1000 ppm in I. galbana. I. galbana produces higher lipids than T. suecica, and is perhaps as a result more impacted by the change in carbon available for lipid production under higher pCO2. I. galbana is an important feedstock, more easily assimilated for growth in juvenile shellfish and reductions in lipid composition may prove problematic for the growth of future shellfish aquaculture. Our findings suggest that higher pCO2 impacts on algal lipid growth are species specific and warrant further study. It is therefore vital to examine the impact of high CO2 on algal lipid production, especially those commercial shellfish feed varieties to predict future impacts on commercial aquaculture

    Assessing environmental controls on the distribution of long-chain alkenones in the Canadian Prairies

    Get PDF
    Long-chain alkenones (LCAs) have been used for decades to reconstruct quantitative sea-surface temperature records, but they also have a great potential for paleotemperature reconstructions in lacustrine settings. Here, we investigated how the presence and abundance of LCAs in surface sediments from 106 lakes varied with environmental conditions in lakes of the northern Great Plains (Canadian Prairies) in southern Saskatchewan, Canada. Consistent with preliminary research, we found LCAs in 55% of surveyed lakes, with mean concentrations of 143 μg/g dry sediment, but very high concentrations (up to 2.3 mg/g dry sediment) in 7% of lakes. Statistical analyses indicate that salinity and stratification play key roles in determining LCA presence and abundance supporting previous research in Spain and the northern Great Plains, USA. Overall, the alkenone unsaturation index (U37K) was not correlated significantly with average summer water temperature, probably because the timing of maximum LCA production occurs during the spring season. We conclude that improved seasonal sampling is required within the study lakes to better identify the timing and habitat of haptophyte production, and allow development of environmental temperature reconstruction tools

    Indian Summer Monsoon variations and competing influences between hemispheres since ~35 ka recorded in Tengchongqinghai Lake, southwest China

    Get PDF
    The southwestern Yunnan Province of China, which is located at the southeastern margin of the Tibetan Plateau and close to Bay of Bengal, is significantly influenced by the Indian Summer Monsoon (ISM). In this study, we reconstruct proxies for the ISM from 35 to 1 ka through detailed analysis of grain-size distribution, geochemical composition and environmental magnetism from a 7.96 m sediment core from Tengchongqinghai Lake, Yunnan Province, China. Globally recognized, abrupt climatic events, including Heinrich Events 0–3 (H0−H3) and the Bølling-Allerød (B/A) warm period are identified in most of our proxies, and the long-term trend is consistent with other published records such as stalagmite oxygen isotopes (δ18O) from Sangxing Cave. Northern Hemisphere (NH) temperature, which is influenced by NH solar insolation, is commonly suggested to play a dominant role in controlling the ISM. A comparison of our record with the δ18O variations of ice cores from Greenland and Antarctica, a sea surface temperature (SST) record from the Bay of Bengal, and summer solar insolation at 25°N latitude demonstrates that the general pattern of ISM change does follow variations in summer insolation; however, the ISM lags summer insolation by thousands of years. While the ISM fluctuations are highly correlated with NH temperature on shorter timescales (centennial-millennial), the gradually weakened ISM from 22.5 ka until the Last Glacial Maximum (LGM) indicates a close relationship with the rise of Southern Hemisphere (SH) temperature and the relatively cold background of the SH. Our record expands on the findings of ISM records from Heqing paleolake basin in southwestern China and the Arabian Sea sediments, suggesting that the NH and SH have a competitive influence on ISM by controlling the cross-equatorial pressure gradient. This relationship means that when NH temperatures are relatively high, it has a stronger influence on the ISM than SH influences. In contrast, when the SH temperature is relatively low, it has a dominant influence on ISM. In addition, we speculate that the change of SH temperature not only influences the cross-equatorial pressure gradient directly, but also likely modulates the circulation system of ocean energy by influencing the Atlantic Meridional Overturning Circulation (AMOC)

    Genomic identification of the long-chain alkenone producer in freshwater Lake Toyoni, Japan: implications for temperature reconstructions

    Get PDF
    Identifying the lacustrine haptophyte species that produce long-chain alkenones (LCAs) is essential prior to down-core temperature reconstructions. Here, we investigated the identity of LCA-producing species from Lake Toyoni, Japan using 18S ribosomal DNA (rDNA) and organic geochemical analyses. The rDNA analyses identified eighteen operational taxonomic units (OTUs) of which only one fell within the haptophyte phylotype. This haptophyte belongs to the Group I phylotype, as supported by the LCA distribution found in surface and down-core sediments, and is closely related to a haptophyte found in Lake BrayaSø (Greenland). The inferred temperature using the Greenland calibration is very close to the Lake Toyoni surface temperature recorded during the spring/early summer season, when the LCA-producing haptophyte is likely to bloom. We therefore suggest that the temperature calibration from the Lake BrayaSø, Greenland is a suitable calibration for down-core temperature reconstructions at Lake Toyoni

    Chronological control and centennial-scale climatic subdivisions of the Last Glacial Termination in the western Mediterranean region

    Get PDF
    The Last Glacial Termination is marked by changing environmental conditions affected by abrupt and rapid climate oscillations, such as Heinrich Stadial 1 (HS1), which is characterized by extremely low sea surface temperatures (SST) and significant changes in northern hemisphere terrestrial landscape (e.g., vegetation) and human dispersion. Previous studies show that overall cold/dry conditions occurred during HS1, but the lack of high-resolution records precludes whether climate was stable or instead characterized by instability. A high-resolution paleoclimatic record from the Padul wetland (southern Iberian Peninsula), supported by a high-resolution chronology and contrasted with other records from southern Europe and the Mediterranean region, shows 1) that the age boundaries of HS1 in this area occurred at similar to 18.0 kyr BP (median age = 17,970 cal yr BP; mean age = 18,030 +/- 330 cal yr BP) and similar to 15.2 kyr BP (median age = 15,210 cal yr BP; mean age = 15,200 +/- 420 cal yr BP) and 2) that climate during HS1 was non-stationary and centennial-scale variability in moisture is superimposed on this overall cold climatic period. In this study, we improve the pollen sampling resolution with respect to previous studies on the same Padul-15-05 sedimentary core and suggest a novel subdivision of HS1 in 7 sub-phases, including: i) 3 sub-phases (a.1-a.3) during an arid early phase (HS1a; similar to 18.4-17.2 kyr BP), ii) a relatively humid middle phase (HS1b; similar to 17.2-16.9 kyr BP), and iii) 3 sub-phases (c.1-c.3) during an arid late phase (HS1c; similar to 16.9-15.7 kyr BP). This climatic subdivision is regionally supported by SST oscillations from the Mediterranean Sea, suggesting a strong land-sea coupling. A cyclostratigraphic analysis of pollen data between 20 and 11 kyr BP indicates that the climate variability and the proposed subdivisions characterized by similar to 2000 and similar to 800-yr periodicities could be related to solar forcing controlling climate in this area. (C) 2021 Elsevier Ltd. All rights reserved.Peer reviewe

    Automated characterisation of glaciomarine sediments using X-ray computed laminography

    Get PDF
    This study investigates the potential of a new high-resolution, non-destructive, X-ray imaging technique for the Quaternary Sciences – computed laminography (CL). Greyscale properties are systematically extracted from digital X-radiographic CL images of cored glaciomarine sediments to analyse and characterise sediments at pixel-scale resolution (< 0.1 mm). We show how this can be achieved manually, and also with an easy-to-use, automated statistical tool which we have devised specifically for use in glaciomarine sediments. This Sediment Characteristics tool, in the form of a plugin for the freely available FIJI/ImageJ programme, extracts mean or median X-ray grey values (GV) – a proxy for sediment density; and associated standard deviation (SD) – a proxy for sediment heterogeneity – at sub-mm resolution, across the width of sediment core CL images. We demonstrate how these properties (GV and SD) can be directly used to characterise sediment properties and in particular to quantify the abundance of gravel clasts, or ice-rafted debris, in cored glaciomarine sediments. The tool’s effectiveness is compared with other, more traditional, X-radiographic methods for counting ice-rafted gravel clasts in glaciomarine sediment. We propose that the CL output and Sediment Characteristics tool also have the potential to quantitatively analyse other 3-dimensional structures, such as cyclic lamination (varve) geometry; deformation structures; bioturbation and void space (porosity). Finally, we present the raw code, allowing open-access, transparency and reproducibility in other formats

    Culturing of the first 37:4 predominant lacustrine haptophyte : geochemical, biochemical, and genetic implications

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Geochimica et Cosmochimica Acta 78 (2012): 51–64, doi:10.1016/j.gca.2011.11.024.Long chain alkenones (LCAs) are potential biomarkers for quantitative paleotemperature reconstructions from lacustrine environments. However, progress in this area has been severely hindered by the lack of culture studies of haptophytes responsible for alkenone distributions in lake sediments: the predominance of C37:4 LCA. Here we report the first enrichment culturing of a novel haptophyte phylotype (Hap-A) from Lake George, ND that produces predominantly C37:4-LCA. Hap-A was enriched from its resting phase collected from deep sediments rather than from water column samples. In contrast, enrichments from near surface water yielded a different haptophyte phylotype (Hap-B), closely related to Chrysotila lamellosa and Pseudoisochrysis paradoxa, which does not display C37:4-LCA predominance (similar enrichments have been reported previously). The LCA profile in sediments resembles that of Hap-A enrichments, suggesting that Hap-A is the dominant alkenone producer of the sedimentary LCAs. In enrichments, excess lighting appeared to be crucial for triggering blooms of Hap-A. Both and indices show a linear relationship with temperature for Hap-A in enrichments, but the relationship appears to be dependent on the growth stage. Based on 18S rRNA gene analyses, several lakes from the Northern Great Plains, as well as Pyramid Lake, NV and Tso Ur, Tibetan Plateau, China contain the same two haptophyte phylotypes. The Great Plains lakes show the Hap-A-type LCA distribution, whereas Pyramid and Tso Ur show the Hap-B type distribution. Waters of the Great Plain lakes are dominated by sulfate, whereas those Pyramid and Tso Ur are dominated by carbonate, suggesting that the sulfate to carbonate ratio may be a determining factor for the competitiveness of the Hap-A and Hap-B phylotypes in natural settings.This work was supported by a grant from the National Science Foundation to Y. Huang (EAR06-02325) and a Brown University Graduate School Dissertation Fellowship to J. L. Toney

    New insights into Holocene hydrology and temperature from lipid biomarkers in western Mediterranean alpine wetlands

    Get PDF
    Alpine regions of the Mediterranean realm are among the most climatically sensitive areas in the world. Thus, alpine wetlands from the southern Iberian Peninsula, in the westernmost part of the Mediterranean region, are highly sensitive sensors of environmental changes. Difficulties have surfaced in separating controls by temperature and/or precipitation in previous paleoenvironmental studies from alpine environments in this area. We present a Holocene biomarker record (n-alkanes and long-chain diols) from a high elevation lake, Laguna de Río Seco (LdRS), in the south of the Iberian Peninsula, which contributes to the identification of these forcing mechanisms. The hydrological history of the area, primarily water availability and evapotranspiration, is reconstructed by means of the n-alkane record, including the indices of average chain length, portion aquatic, and carbon preference index, as well as hydrogen isotopes (δD) of aquatic (δDaq) and terrestrial (δDwax) n-alkanes. Temperatures are also estimated using the algae derived long-chain diols. We interpret δDaq and δDwax fluctuations as showing changes in the source and amount of precipitation throughout the LdRS record. An Atlantic precipitation source appears to have predominated during the early-middle Holocene, but an occasional Mediterranean influence with an isotopic enrichment in precipitation is detected in the middle-late Holocene that is likely related to the setting of the current atmospheric pattern in southeastern Iberia under the joint control of the North Atlantic Oscillation (NAO) and the Western Mediterranean dynamics, such as the Western Mediterranean Oscillation (WeMO). Our new record from LdRS is consistent with a generalized trend of a humid early-middle Holocene with low temperature variability, evolving towards an arid middle-late Holocene with abrupt temperature changes. In addition to these long-term trends during the last ∼10,500 years, two phases of climate instability, evidenced by abrupt depletions in δDaq, have been identified at the end of these periods, one between ∼6500 and 5500 cal yr BP and another in the last ∼500 years. These episodes would represent strengthened winter cold conditions that favoured the persistence of snowpack and frozen soil in the catchment, causing reduced terrestrial plant growth and low lake evaporation. According to the long-chain diol record, temperatures during these phases were relatively low, but experienced abrupt increases at the end of each period

    Novel alkenone-producing strains of genus Isochrysis (Haptophyta) isolated from Canadian saline lakes show temperature sensitivity of alkenones and alkenoates

    Get PDF
    Alkenone-producing species have been recently found in diverse lacustrine environments, albeit with taxonomic information derived indirectly from environmental genomic techniques. In this study, we isolated alkenone-producing algal species from Canadian saline lakes and established unialgal cultures of individual strains to identify their taxonomical and molecular biological characteristics. Water and sediments collected from the lakes were first enriched in artificial seawater medium over a range of salinities (5–40 g/L) to cultivate taxa in vitro. Unialgal cultures of seven haptophyte strains were isolated and categorized in the Isochrysis clade using SSU and LSU rRNA gene analysis. The alkenone distributions within isolated strains were determined to be novel compared with other previously reported alkenone-producing haptophytes. While all strains produced the typical C37 and C38 range of isomers, one strain isolated from Canadian salt lakes also produced novel C41 and C42 alkenones that are temperature sensitive. In addition, we showed that all alkenone unsaturation indices (e.g., UK37 and UK'37) are temperature-dependent in culture experiments, and that alkenoate indices (e.g., UA37, UA38, RIA38 and A37/A38) provide alternative options for temperature calibration based on these new lacustrine algal strains. Importantly, these indices show temperature dependence in culture experiments at temperatures below 10 °C, where traditional alkenone proxies were not as sensitive. We hypothesize that this suite of calibrations may be used for reconstructions of past water temperature in a broad range of lakes in the Canadian prairies

    A palaeoecological approach to understanding the past and present of Sierra Nevada, a Southwestern European biodiversity hotspot

    Get PDF
    Mediterranean mountainous environments are biodiversity hotspots and priority areas in conservation agendas. Although they are fragile and threatened by forecasted global change scenarios, their sensitivity to long-term environmental variability is still understudied. The Sierra Nevada range, located in southern Spain on the north-western European flanks of the Mediterranean basin, is a biodiversity hotspot. Consequently, Sierra Nevada provides an excellent model system to apply a palaeoecological approach to detect vegetation changes, explore the drivers triggering those changes, and how vegetation changes link to the present landscape in such a paradigmatic mountain system. A multi-proxy strategy (magnetic susceptibility, grain size, loss-on-ignition, macroremains, charcoal and palynological analyses) is applied to an 8400-year long lacustrine environmental archive from the Laguna de la Mosca (2889 masl). The long-term ecological data show how the Early Holocene pine forests transitioned towards mixed Pinus-Quercus submediterranean forests as a response to a decrease in seasonality at ~7.3 cal. kyr BP. The mixed Pinus-Quercus submediterranean forests collapsed drastically giving way to open evergreen Quercus formations at ~4.2 cal. kyr BP after a well-known aridity crisis. Under the forecasted northward expansion of the Mediterranean area due to global change-related aridity increase, mountain forests inhabiting territories adjacent to the Mediterranean Region could experience analogous responses to those detected in the Sierra Nevada forests to the Mid to Late Holocene aridification, moving from temperate to submediterranean and then Mediterranean formations
    • …
    corecore