48 research outputs found

    Directional interacting whispering gallery modes in coupled dielectric microdisks

    Full text link
    We study the optical interaction in a coupled dielectric microdisks by investigating the splitting of resonance positions of interacting whispering gallery modes (WGMs) and their pattern change, depending on the distance between the microdisks. It is shown that the interaction between the WGMs with odd parity about y-axis becomes appreciable at a distance less than a wavelength and causes directional emissions of the resulting interacting WGMs. The directionality of the interacting WGMs can be understood in terms of an effective boundary deformation in ray dynamical analysis. We also discuss about the oscillation of the splitting when the distance is greater than a wavelength.Comment: 7 pages, 10 figure

    Resonances in a circular dielectric cavity

    Full text link
    We study resonance distributions in a circular dielectric cavity. It is shown that the decay-rate distribution has a peak structure and the details of the peak are consistent with the classical survival probability time distribution. We also investigate the behavior of the complex resonance positions at the small opening limit. At the large nn limit, the real part of complex resonance positions approaches the solutions with different mm of Dirichlet problem with a scale n−2n^{-2} and the imaginary part goes zero as n−2mn^{-2m} for TM and n−2(m+1)n^{-2(m+1)} for TE polarization, where mm is the order of the resonance.Comment: 10 pages, 7 figure

    Toxoplasma gondii Inhibits Apoptosis in Infected Cells by Caspase Inactivation and NF-κB Activation

    Get PDF
    Our experiments aimed to clarify the mechanism by which host cell apoptosis is inhibited by infection with the intracellular protozoan parasite, Toxoplasma gondii (T. gondii). Mouse spleen cells were cultured in 6-well plates with RPMI 1640/10% FBS at 37℃, in a 5% CO2 atmosphere. Apoptosis of spleen cells was induced by actinomycin-D (AD) treatment for 1 h prior to infection with T. gondii. A variety of assays were used to assess the progression of apoptosis: DNA size analysis on agarose gel electrophoresis, flow cytometry with annexin V/PI staining, and analysis of expression levels of Bcl-2 family and NF-κB mRNA and proteins by RT-PCR, Western blotting, and EMSA. Additionally, transmission electron microscopy (TEM) was performed to observe changes in cell morphology. Fragmentation of DNA was inhibited in spleen cells treated with AD and T. gondii 5 h and 18 h post infection, respectively, and flow cytometry studies showed a decreased apoptotic rates in AD and T. gondii treated spleen cells. We observed decreased expression of Bax mRNA and protein, while levels of Bcl-2 mRNA remained constant in spleen cells treated with AD and T. gondii. Caspase 3 and PARP were inactivated in cells treated with AD and T. gondii, and increased levels of cleaved caspase 8 were also observed. Analysis of EMSA and Western blot data suggests that activation of transcription factor NF-κB may be involved in the blockade of apoptosis by T. gondii. TEM analysis showed nuclear fragmentation and chromatin condensation occurring in spleen cells treated with AD; however, such apoptosis-associated morphological changes were not observed in cells treated with both AD and T. gondii tachyzoites. Together, these data show that T. gondii infection inhibits AD induced apoptosis via caspase inactivation and NF-κB activation in mouse spleen cells

    Arsenic trioxide concentration determines the fate of Ewing’s sarcoma family tumors and neuroblastoma cells in vitro

    Get PDF
    AbstractArsenic trioxide (As2O3) induces both the differentiation and apoptosis of acute promyelocytic leukemia cells in a concentration dependent manner. We assessed the effects of As2O3 in CADO-ES Ewing’s sarcoma (ES), JK-GMS peripheral primitive neuroectodermal tumor (PNET), and SH-SY5Y neuroblastoma cells, as they share common histogenetic backgrounds. As2O3 at low concentrations (0.1–1μM) induced SH-SY5Y differentiation, and whereas PNET cells acquired a slightly differentiated phenotype, change was minimal in ES cells. Extracellular signal-regulated kinase 2 (ERK2) was activated at low As2O3 concentrations, and PD98059, an inhibitor of MEK-1, blocked SH-SY5Y cell differentiation by As2O3. High concentrations (2–10μM) of As2O3 induced the apoptosis in all three cell lines, and this was accompanied by the activation of c-jun N-terminal kinase. The generation of H2O2 and activation of caspase 3 were identified as critical components of As2O3-induced apoptosis in all of the above cell lines. Fibroblast growth factor 2 enhanced As2O3-induced apoptosis in JK-GMS cells. The overall effects of As2O3 strongly suggest that it has therapeutic potential for the treatment of ES/PNET

    Roles of Exosome-Like Vesicles Released from Inflammatory C2C12 Myotubes: Regulation of Myocyte Differentiation and Myokine Expression

    Get PDF
    Background/Aims: The complicated differentiation processes of cells in skeletal muscle against inflammation that induce muscle atrophy are not fully elucidated. Given that skeletal muscle is a secretory organ, we evaluated the effects of inflammation on myogenic signals and myokine expression, and the roles of inflammatory exosomes released by myotubes in myogenic differentiation. Methods: Inflammation was induced by treatment of fully differentiated C2C12 myotubes with a cytokine mixture of TNF-α and INF-γ. Exosome-like vesicles (ELVs) were isolated from conditioned media of control or inflamed myotubes and incubated with myoblasts. The expression of molecular switches that contribute to myogenic differentiation, including several kinases, their downstream targets, and myokines, were evaluated using immunoblot analysis in inflamed myotubes and in myoblasts treated with ELVs. Results: Inflammation activated molecular mechanisms contributing to muscle atrophy, including AMPK, p-38 MAPK and JNK, while inhibiting Akt-mediated myogenic signals. In addition, inflammation induced myostatin expression with suppression of a myostatin-counteracting myokine, decorin. Well-characterized ELVs released from inflamed myotubes induced myoblast inflammation and inhibited myogenic mechanisms while stimulating atrophic signals. Conclusion: Inflammation of skeletal muscle induces muscle atrophy via multiple mechanisms, including the regulation of myokines and kinases. Inflammatory ELVs are likely to contribute to inflammation-induced muscle atrophy

    YM155 Induces EGFR Suppression in Pancreatic Cancer Cells

    Get PDF
    YM155, which inhibits the anti-apoptotic protein survivin, is known to exert anti-tumor effects in various cancers, including prostate and lung cancer. However, there are few reports describing the inhibitory effect of YM155 on human pancreatic cancers that highly express survivin. Here, we tested the effects of YM155 on a variety of cancer cell lines, including pancreatic cancer cells. We found that YM155 exerts an anti-proliferative effect in pancreatic cancer cells, inducing cell death through suppression of XIAP (X-linked inhibitor of apoptosis) as well as survivin without affecting the anti-apoptotic proteins Bcl-xL or Mcl-1. YM155 also inhibited tumor growth in vivo, reducing the size of pancreatic cancer cell line MIAPaCa-2 xenografts by 77.1% on day 31. Western blot analyses further showed that YM155 downregulated phosphoinoside 3-kinase (PI3K) expression and reduced the levels of phosphorylated (activated) extracellular signal-regulated kinase (ERK) and STAT3 (signal transducer and activator of transcription 3) in PANC-1 cells. Interestingly, we also found that YM155 downregulated the epidermal growth factor receptor (EGFR) in various cancer cell lines and induced the EGFR phosphorylation and ubiquitination of EGFR in PANC-1 cells. YM155 also modestly promoted the ubiquitination of survivin and XIAP. Therefore, YM155 acts through modulation of EGFR and survivin expression to subsequently reduce survival. We suggest that YM155 has potential as a therapeutic agent in the treatment of pancreatic cancer
    corecore