13 research outputs found

    A QTL analysis of host plant effects on fungal endophyte biomass and alkaloid expression in perennial ryegrass.

    Get PDF
    The association between perennial ryegrass (Loliumperenne L.) and its Epichloë fungal endophyte symbiont, Epichloëfestucae var. lolii, supports the persistence of ryegrass-based pastures principally by producing bioactive alkaloid compounds that deter invertebrate herbivory. The host plant genotype affects endophyte trait expression, and elucidation of the underlying genetic mechanisms would enhance understanding of the symbiosis and support improvement of inplanta endophyte performance through plant breeding. Rapid metabolite profiling and enzyme-linked immunosorbent assay were used to quantify endophyte alkaloids and mycelial mass (MM) in leaves harvested, in consecutive autumns, from an F1 mapping population hosting standard toxic endophyte. Co-aligned quantitative trait loci (QTL) on linkage groups (LG)2, LG4 and LG7 for MM and concentrations of alkaloids peramine and ergovaline confirmed host plant effects on both MM and alkaloid level and inferred the effect on alkaloids was modulated through the quantity of endophyte present in the leaf tissue. For ergovaline, host regulation independent of endophyte concentration was also indicated, by the presence of MM-independent ergovaline QTL on LG4 and LG7. Partitioning of host genetic influence between MM-dependent and MM-independent mechanisms was also observed for the alkaloid N-formylloline (NFL), in a second mapping population harbouring a tall fescue-sourced endophyte. Single-marker analysis on repeated MM and NFL measures identified marker-trait associations at nine genome locations, four affecting both NFL and MM but five influencing NFL concentration alone. Co-occurrence of QTL on LG3, LG4 and LG7 in both mapping populations is evidence for host regulatory loci effective across genetic backgrounds and independent of endophyte variant. Variation at these loci may be exploited using marker-assisted breeding to improve endophyte trait expression in different host population × endophyte combinations

    Condensed Tannins in White Clover (Trifolium repens) Foliar Tissues Expressing the Transcription Factor TaMYB14-1 Bind to Forage Protein and Reduce Ammonia and Methane Emissions in vitro

    Get PDF
    Grazing ruminants contribute to global climate change through enteric methane and nitrous oxide emissions. However, animal consumption of the plant polyphenolics, proanthocyanidins, or condensed tannins (CTs) can decrease both methane emissions and urine nitrogen levels, leading to reduced nitrous oxide emissions, and concomitantly increase animal health and production. CTs are largely absent in the foliage of important temperate pasture legumes, such as white clover (Trifolium repens), but found in flowers and seed coats. Attempts at enhancing levels of CT expression in white clover leaves by mutagenesis and breeding have not been successful. However, the transformation of white clover with the TaMYB14-1 transcription factor from Trifolium arvense has resulted in the production of CTs in leaves up to 1.2% of dry matter (DM). In this study, two generations of breeding elevated foliar CTs to >2% of DM. The CTs consisted predominantly of prodelphinidins (PD, 75-93%) and procyanidins (PC, 17-25%) and had a mean degree of polymerization (mDP) of approximately 10 flavan-3-ol subunits. In vitro studies showed that foliar CTs were bound to bovine serum albumin and white clover proteins at pH 6.5 and were released at pH 2.-2.5. Using rumen in vitro assays, white clover leaves containing soluble CTs of 1.6-2.4% of DM significantly reduced methane production by 19% (p <= 0.01) and ammonia production by 60% (p <= 0.01) relative to non-transformed wild type (WT) controls after 6 h of incubation. These results provide valuable information for further studies using CT expressing white clover leaves for bloat prevention and reduced greenhouse gas emissions in vivo

    Design and analysis for spatial effects in pasture trials

    No full text
    Measurements made on pasture plots in field evaluation studies are affected by the spatial heterogeneity of the field due to local influences of paddock history, moisture drying order and fertility gradients. Statistical models to account for these inherent and ephemeral effects can markedly enhance the accuracy of comparisons among test lines or treatments so that interpretation of the results is objective, accurate and reliable. This paper reports on statistical methods for the field evaluation of white clover breeding lines in the development of locally adapted white clover cultivars for New South Wales dry-land pastures

    Genomic Predictive Ability for Foliar Nutritive Traits in Perennial Ryegrass

    No full text
    Forage nutritive value impacts animal nutrition, which underpins livestock productivity, reproduction and health. Genetic improvement for nutritive traits in perennial ryegrass has been limited, as they are typically expensive and time-consuming to measure through conventional methods. Genomic selection is appropriate for such complex and expensive traits, enabling cost-effective prediction of breeding values using genome-wide markers. The aims of the present study were to assess the potential of genomic selection for a range of nutritive traits in a multi-population training set, and to quantify contributions of family, location and family-by-location variance components to trait variation and heritability for nutritive traits. The training set consisted of a total of 517 half-sibling (half-sib) families, from five advanced breeding populations, evaluated in two distinct New Zealand grazing environments. Autumn-harvested samples were analyzed for 18 nutritive traits and maternal parents of the half-sib families were genotyped using genotyping-by-sequencing. Significant (P < 0.05) family variance was detected for all nutritive traits and genomic heritability (h2g) was moderate to high (0.20 to 0.74). Family-by-location interactions were significant and particularly large for water soluble carbohydrate (WSC), crude fat, phosphorus (P) and crude protein. GBLUP, KGD-GBLUP and BayesCĎ€ genomic prediction models displayed similar predictive ability, estimated by 10-fold cross validation, for all nutritive traits with values ranging from r = 0.16 to 0.45 using phenotypes from across two locations. High predictive ability was observed for the mineral traits sulfur (0.44), sodium (0.45) and magnesium (0.45) and the lowest values were observed for P (0.16), digestibility (0.22) and high molecular weight WSC (0.23). Predictive ability estimates for most nutritive traits were retained when marker number was reduced from one million to as few as 50,000. The moderate to high predictive abilities observed suggests implementation of genomic selection is feasible for most of the nutritive traits examined

    Coumarin Content, Morphological Variation, and Molecular Phylogenetics of Melilotus

    No full text
    Melilotus albus and Melilotus officinalis are widely used in forage production and herbal medicine due to the biological activity of their coumarins, which have many biological and pharmacological activities, including anti-HIV and anti-tumor effects. To comprehensively evaluate M. albus and M. officinalis coumarin content (Cou), morphological variation, and molecular phylogeny, we examined the Cou, five morphological traits and the molecular characterization based on the trnL-F spacer and internal transcribed spacer (ITS) regions of 93 accessions. Significant (p &lt; 0.05) variation was observed in the Cou and all five morphological traits in both species. Analysis of population differentiation (Pst) of the phenotypic traits showed that powdery mildew resistance (PMR) had the greatest Pst, meaning that this trait demonstrated the largest genetic differentiation among the accessions. The Pst values of dry matter yield (DMY) and Cou were relatively high. Biplot analysis identified accessions with higher DMY and higher and lower Cou. Analysis of molecular sequence variation identified seven haplotypes of the trnL-F spacer and 13 haplotypes of the ITS region. Based on haplotype and sequence analyses, the genetic variation of M. officinalis was higher than that of M. albus. Additionally, ITS sequence analysis showed that the variation among accessions was larger than that among species across three geographical areas: Asia, Europe, and North America. Similarly, variation among accessions for both the trnL-F and ITS sequences were larger than the differences between the geographical areas. Our results indicate that there has been considerable gene flow between the two Melilotus species. Our characterization of Cou and the morphological and genetic variations of these two Melilotus species may provide useful insights into germplasm improvement to enhance DMY and Cou

    HDY-18-A0216RR

    No full text
    Simulation results files and data input files to replicate simulation experiments in QuLinePlus

    Data from: QuLinePlus: extending plant breeding strategy and genetic model simulation to cross-pollinated populations – case studies in forage breeding

    No full text
    Plant breeders are supported by a range of tools that assist them to make decisions about the conduct or design of plant breeding programs. Simulations are a strategic tool that enable the breeder to integrate the multiple components of a breeding program into a number of proposed scenarios that are compared by a range of statistics measuring the efficiency of the proposed systems. A simulation study for the trait growth score compared two major strategies for breeding forage species, among half-sib family selection and among and within half-sib family selection. These scenarios highlighted new features of the QuLine program, now called QuLinePlus, incorporated to enable the software platform to be used to simulate breeding programs for cross pollinated species. Each strategy was compared across three levels of HS family mean heritability (0.1, 0.5 and 0.9), across three sizes of the initial parental population (10, 50, and 100), and across three genetic effects models (fully additive model, a mixture of additive, partial and over dominance model, and a mixture of partial dominance and over dominance model). Among and within half-sib selection performed better than among half-sib selection for all scenarios. The new tools introduced into QuLinePlus should serve to accurately compare among methods and provide direction on how to achieve specific goals in the improvement of plant breeding programs for cross breeding species

    QuLinePlus: extending plant breeding strategy and genetic model simulation to cross-pollinated populations—case studies in forage breeding

    No full text
    Plant breeders are supported by a range of tools that assist them to make decisions about the conduct or design of plant breeding programs. Simulations are a strategic tool that enables the breeder to integrate the multiple components of a breeding program into a number of proposed scenarios that are compared by a range of statistics measuring the efficiency of the proposed systems. A simulation study for the trait growth score compared two major strategies for breeding forage species, among half-sib family selection and among and within half-sib family selection. These scenarios highlighted new features of the QuLine program, now called QuLinePlus, incorporated to enable the software platform to be used to simulate breeding programs for cross-pollinated species. Each strategy was compared across three levels of half-sib family mean heritability (0.1, 0.5, and 0.9), across three sizes of the initial parental population (10, 50, and 100), and across three genetic effects models (fully additive model, a mixture of additive, partial and over dominance model, and a mixture of partial dominance and over dominance model). Among and within half-sib selection performed better than among half-sib selection for all scenarios. The new tools introduced into QuLinePlus should serve to accurately compare among methods and provide direction on how to achieve specific goals in the improvement of plant breeding programs for cross breeding species
    corecore